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Abstract

The ATLAS Experiment[1] is one of the major experiments located at the Large

Hadron Collider (LHC) at CERN in Geneva, Switzerland [2]. In 2010, ATLAS

is expected to start collecting data from proton-proton collisions at a 7 GeV

centre-of-mass energy, increasing to the design energy of 14 TeV after 2012.

The LHC and ATLAS have ambitious physics goals which require detectors that

are both accurate and efficient. In the centre of the detector, the reconstruction

of charged particle tracks is performed by silicon and drift tube based detec-

tors. To attain the physics goals of ATLAS the resolutions of the measured track

parameters must not be degraded by more than 20% due to detector misalign-

ments. Thus, the relative positions of the silicon detector elements have to be

known to an accuracy of better than 10 micrometers.

This requirement can be achieved by track based alignment algorithm tech-

niques. A global χ2 track-based alignment method has been developed and

implemented into the ATLAS software. The difficulties of aligning a system

with over thirty thousand degrees of freedom have been successfully overcome.

Simulation studies have shown that the algorithm will be able to align the full

detector with collision data to the required accuracy.

In addition to detector misalignments, bremsstrahlung of electrons prior to the

calorimeters will be detrimental to electron track reconstruction, and hence the

physics discovery capabilities of ATLAS. A method of accounting for the affects

of bremsstrahlung using calorimeter cluster position information has been im-

plemented and tested using Monte Carlo simulation.
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1
CHAPTER

INTRODUCTION

The Large Hadron Collider (LHC)[2] has been created to study the nature of physics

at very high energies. By investigating a previously inaccessible energy regime, physi-

cists hope not only to find the missing piece the Standard Model, the Higgs Boson, but

also investigate theories beyond it. The LHC is powerful enough to probe space-time

more deeply than ever before, allowing us to take the next step in the understanding

of our Universe.

This dissertation is arranged in two parts with conclusions being drawn at the end

of each. Central to both parts is the operation of the innermost detector of the AT-

LAS[1] detector, named the Inner Detector. The Inner Detector is responsible for the

measurement of the trajectory and momentum of charged particles that traverse it.

The motivation of the LHC and ATLAS is given in Chapter 2. A basic description of

the LHC and the ATLAS detector is given in Chapter 3. An overview of track fitting, a

central topic of this thesis, is presented in Chapter 4. A method of aligning the ATLAS

Inner Detector using tracks is presented in Chapter 5. This method is applied to a toy

model in Chapter 6 and to the full ATLAS Inner Detector in Chapter 7.
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2 Introduction

Further to the alignment, a method for accounting for the effects of bremsstrahlung

is presented in Chapter 8. Its application to the reconstruction of a number of mass

resonances is shown in Chapter 9.



2
CHAPTER

THEORETICAL MOTIVATION

The desire to understand and explain the world around us has been the driving force

behind human innovation and discovery. Fundamental physics has attempted to re-

duce nature to its most essential traits. Currently we know of four basic forces; the

gravitational force, the electromagnetic force, the weak nuclear force, and the strong

nuclear force.

Gravity is best described by Einstein’s theory of General Relativity [4]. This theory

describes gravity as a geometric property of space and time, linking the geometry of

the universe to the gravitational force. Although gravity is the weakest of all the four

basic forces it dominates at large distances.

The other three forces and all known particles are described by a very different for-

malism, known as Quantum Field Theory (QFT). It merges ideas from quantum me-

chanics, classical field theory, and special relativity. The theory that collectively de-

scribes the three forces is known as the Standard Model (SM) of particle physics[5].

Physicists seek a single theory that describes all forces but as of yet all attempts to

incorporate gravity into the Standard Model have failed.
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4 Theoretical Motivation

The highly predictive nature of both General Relativity and the Standard Model has

allowed for these models to be tested to high precision. Both have survived all con-

frontations with precision measurements. Nonetheless, there is a range of reasons for

the hypothesis of a theory more fundamental than the Standard Model, and it is hoped

that this theory will provide a unified description of particles and their interactions.

This chapter describes the physics motivation of the LHC and the ATLAS experiment.

2.1. The Standard Model

The Standard Model (SM) provides the best known description of the fundamental

particles and their interaction, neglecting gravity. As it not feasible to provide a full

description of the model here, only of some of the most valuable features will be

detailed.

The SM is a gauge QFT which describes the interaction of point-like particles with

half-integer spin, called fermions, whose interactions are mediated by integer spin

gauge bosons. It combines the two QFT theories of electroweak and strong interac-

tions. The electroweak theory is already a unification of the relativistic electromag-

netic theory, quantum electrodynamics (QED) and the theory of the weak interactions,

as initially proposed by Glashow[6], Weinberg[7], and Salam[8]. The theory of the

strong interaction is called quantum chromodynamics (QCD).

One of the essential components of the SM is the group of local gauge symmetries

SU(3)C ⊗ SU(2)L ⊗U(1)Y [9]. In QED for instance, the requirement that the electron

field be invariant to local gauge transformation leads to the introduction of a gauge

field. This field transforms just as Maxwell’s equations and describes a massless spin-

1 field, the photon. In a similar manner, local gauge invariance requirements in the

SM predict the W+, W− and Z bosons of the weak interaction and the gluons of the

strong interaction.

An immediate problem with the theory is that the presence of any mass term violates

the chiral symmetry SU(2)L. Higgs suggested a solution to this problem[10,11]: the

gauge invariance could be spontaneously broken with the addition of a complex scalar

field doublet φ, with Lagrangian

'Higgs =
!

∂µφ
"† #
∂ µφ

$

− V (φ), (2.1)
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where the potential

V (φ) = µ2(φ†φ) +λ
!

φ†φ
"2

(2.2)

is the key1. When µ2 < 0 there will be spontaneous symmetry breaking. The λ term

describes a quartic self-interaction between the scalar fields and is required to be

greater than zero to ensure that the vacuum is stable.

This mechanism allowed Glashow, Weinberg and Salam to propose a unified elec-

troweak theory for leptons. Through the use of the Higgs mechanism, this theory

allows for massive W± bosons and leptons, and a massive Z boson while retaining a

massless photon. Additionally, a massive Higgs boson is predicted, where the only free

parameter is the Higgs mass. The W± and Z bosons were discovered at the CERN SPS

by the UA1 and UA2 experiments[12,13]. The Higgs boson is the only SM particle

which has not yet been discovered.

Despite not being able to predict the mass of the Higgs boson, the SM is able to

constrain it. Unitarity of the SM requires that mh ! 780 GeV , unless there is new

physics below the TeV scale[14]. Additionally, the Higgs boson mass can be indirectly

limited from a global electroweak fit to a broad range of experimental measurements.

This fit strongly favours a light Higgs mass[15] (see Figure 2.1).

Searches for the Higgs boson have been conducted at the Large Electron-Positron

Collider (LEP) at CERN and at the Tevatron collider at FNAL. LEP provided a lower

limit for the Higgs boson mass of mh > 114.4GeV[16]. Tevatron has recently excluded

a Higgs boson mass between 163 and 166 GeV[17], both at 95% confidence level. The

exclusion results, together with a global fit to precision electroweak measurements are

shown in Figure 2.1.

The fundamental matter particles of the SM are all fermions. There are three gener-

ations of coloured up-type and down-type quarks, and three families of charged and

neutral leptons. The quarks come in three colours, as described in the quark model

developed by Gell-Mann [18]. Table 2.1 summarises the fermions of the SM. The

question of why the fundamental fermions come in three generations cannot be an-

swered by the SM. Theorists hope to address this question with more a fundamental

theory containing additional symmetries.

1This is in fact the minimal solution to the problem. More complex potentials can also lead to spon-
taneous symmetry break but in general they would require a number of Higgs particles
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Figure 2.1.: Global fit to electroweak precision data (left)[15], and Higgs boson mass exclu-

sions from LEP and Tevatron (right)[17].

Family I II III

Leptons (e, νe)L (µ, νµ)L (τ, ντ)L

eR µR τR

Quarks (u, d)L (c, s)L (t , b)L

(×3 colours) uR, dR cR, sR tR, bR

Table 2.1.: The fundamental fermionic particles in the SM grouped according to family.

Braces indicate weak isospin doublets. The subscripts L and R denote the left

and right handed components respectively.
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The quark mass eigenstates are not the weak eigenstates. The weak eigenstates are

mixed states where a unitary 3 × 3 matrix, called the Cabibbo-Kobayashi-Maskawa

(CKM) matrix [19,20], governs the transformation between the weak basis and the

mass basis states. The implications of this transformation are very important and

result in the sole source of CP-violation in the SM. Finally, the requirement of local

gauge invariance in QCD results in the eight massless spin-1 gluons of the strong

force. The gauge symmetry group of QCD is SU(3)C , describing three colour degrees

of freedom.

In the formulation of the SM, it is also noteworthy that the SU(2) and SU(3) sym-

metry groups are non-abelian. An important consequence of this property is that the

force carriers can self-couple, contributing to their self-energy and to the running of

the coupling constants.

The QCD properties of confinement, the rapid increase of the strong force when try-

ing to separate two coloured particles, and asymptotic freedom, where at very small

distances coloured particles interact very weakly[21,22], have very important conse-

quences. Firstly they allow the use of perturbation theory for high-energy processes,

but not in the low energy regime. When produced, coloured particles (gluons and

quarks) will undergo “hadronisation”, where they group themselves into colour sin-

glet objects which are hadrons or mesons. A collimated “jet” of hadrons and mesons is

detected experimentally if the initial coloured particle, or “parton”, is generated with

high momentum.
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For completeness, the SM Lagrangian reads[23]

'SM = −
1

4
Wµν

a W a
µν −

1

4
BµνBµν −

1

4
Gµνa Ga

µν
︸ ︷︷ ︸

Gauge bosons kinetic and self−interaction terms

(2.3)

+ L̄γµ
)

i∂µ −
1

2
gτaW a

µ −
1

2
g ′Y Bµ

*

L+ R̄γµ
)

i∂µ −
1

2
g ′Y Bµ

*

R

︸ ︷︷ ︸

Fermions kinetic and electroweak interaction terms

+

+
+
+
+

)

i∂µ −
1

2
gτaW a

µ −
1

2
g ′Y Bµ

*

φ

+
+
+
+

2

− µ2φ†φ −λ(φ†φ)2

︸ ︷︷ ︸

Higgs doublet field φ with electroweak couplings

+ gsG
a
µq̄iγ

µTa
i jq j

︸ ︷︷ ︸

quark gluon interactions

+
#

M1 L̄φR+M2 L̄φcR+ h.c.
$

︸ ︷︷ ︸

Fermion mass and Higgs coupling terms

,

where L denotes left handed quark and lepton isospin doublets, R stands for right

handed isospin singlets (quark or lepton), q is a quark field, (W , B, G) and (g, g ′, gs)

are the three gauge fields and the three coupling constants of the weak isospin, hyper-

charge, gluon fields. φ is the scalar Higgs field with µ and λ describing its potential.

(τ, Y , T) are the symmetry group generators for the weak isospin, hypercharge, gluon

fields. Finally M1, M2 contain the Higgs-Yukawa couplings to the fermions.

In its simplest version, the SM requires a total of 19 parameters: 9 fermion masses

(quarks and charged leptons), 4 quark-mixing matrix (CKM) quantities, 2 gauge bo-

son masses (for example the Z and Higgs boson masses), 3 coupling constants, and 1

strong CP parameter.

The SM has been extensively tested with many independent measurements and to

date no inconsistencies have been found. Further tests of the SM will be performed at

the LHC. For example, a precise measurement of the W boson mass will put in place a

more stringent constraint on the mass of the Higgs. The measurement of the W mass

will require a detailed knowledge of the detector. In particular the alignment of the

Inner Detector of ATLAS will be required to be known to the micron level[24]. The

alignment of the ATLAS Inner Detector is the focus of the first half of this thesis.
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2.2. Phenomenology

The SM theory completely describes the basic interactions of the known fundamental

particles and is very predictive. Experimental particle physics measures quantities

such as cross sections, or kinematic variables. At hadron colliders, the calculation

of these observables requires, in addition to the theoretical framework of the SM,

two major phenomenological additions. These are required in the main part because

protons are composite objects. Also, because QCD confinement causes perturbation

theory to be inapplicable at low energies it cannot be used to make predictions in

QCD.

The two additions are:

1. Parton density functions (PDF) that describe the probability of a given parton

(quark and gluons) inside a proton, as a function of momentum transfer (Q2)

and the Bjorken x scaling variable [25].

2. Fragmentation and Hadronisation of the coloured particles. These non-perturbative

processes are described by phenomenological shower models which have been

tuned to agree with measured properties.

When the SM is augmented with PDFs and shower generators it allows the production

cross sections as a function of centre-of-mass (CM) energy to be predicted for various

physics processes as shown in Figure 2.2.

The total proton-proton (p − p) cross section at a CM energy of 14 TeV is predicted

to be 102mb[27]. This is split into elastic (23mb) and inelastic (79mb) parts. The

inelastic cross section is strongly dominated by QCD processes, while the expected

Higgs cross section is many orders of magnitude smaller.

QCD processes produce an environment at the LHC dominated by hadrons, making

leptonic decay channels of particles, into electrons, muons and tauons, vital for ac-

curate identification of the underlying physics process. Improving the reconstruction

of electrons is the focus of the latter part of this thesis, with the early part of this

focusing on the alignment of the detector.
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Figure 2.2.: Expected production cross sections and event rates (for L = 1033 cm−2 s−1) for

several SM physics processes at p–(anti)p colliders, as a function of the centre-of-

mass energy[26]. The discontinuity at
*

s ≈ 4 TeV indicates the transition from

p− p̄ to p− p
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Figure 2.3.: The running of the coupling constants in the SM (left) and the Supersymmetric

SM (right)[29]. The three gauge couplings correspond to the U(1)Y⊗ SU(2)L ⊗
SU(3)C symmetries: α1 (electromagnetic/hypercharge), α2 (weak), α3 (strong).

2.3. Beyond the Standard Model

As of yet there has been no clear experimental evidence of physics beyond the SM.

However, it is evident that the SM needs to be extended to describe physics at higher

energy scales. For example, a new model will be required at the energy scale where

quantum gravitational effects become important. This energy scale is the so-called

Planck scale, MPlanck =
,

ħhc/GNewton ≈ 1019 GeV. This energy scale is well beyond

the reach of the LHC, but at the TeV scale there are also reasons for the emergence

of new physics. For example in the SM the scattering amplitudes of vector bosons

violate unitarity for a Higgs Boson mass > 870 GeV [28]. If a light Higgs Boson does

not exist, some new physics must be present.

There are a number of other reasons which suggests physics beyond-SM:

• Grand unification of the gauge couplings. Although the strong interaction has

been incorporated into the SM, the strong force has not merged with the elec-

tromagetic and weak forces. Estimates of the three SM gauge couplings at high

energy suggest that they will not merge, but come close at 1015 GeV [29] (see

Figure 2.3). The fact that they do not merge at high energy is unappealing from

a theoretical standpoint, as it is contrary to the idea of a grand unified theory

(GUT). The aim of a GUT is to encompass the SM theory within a symmetry

group and thereby introduce new symmetries to reduce the number of free pa-

rameters. To date, no widely accepted GUT theory has been produced.
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• The Gauge hierarchy problem is the question of why the Higgs boson is expected

to be so much lighter than the Planck mass or the grand unification energy.

The bare Higgs mass will receive large quantum loop corrections from virtual

effects of every particle that couples directly or indirectly to the Higgs field.

These quantum corrections are quadratically divergent[28]. All of the fermions

of the SM play a role in the quadratically divergent correction with the largest

contribution coming from the top quark (as it is the heaviest). If the cut-off to

these corrections (which sets the scale for new physics), ΛUV, is set at the GUT

scale (∼ 1016 GeV ) or Planck scale (∼ 1019 GeV ), the huge discrepancy between

the cut-off and the Higgs mass scale will require what is known as fine tuning to

keep a light and stable Higgs mass.

To ensure vacuum stability and that the theory is non trivial; upper and lower

limits can be placed on mh depending on the value of ΛUV, for example mh <

180 GeV if ΛUV = 1019 GeV [30].

It should be noted that there is no reason that fine tuning is not in fact what

keeps the Higgs mass stable. In addition fine tuning would suggest that there is

no new physics between the energy scale of the SM and that of the cut-off.

• Dark matter and dark energy. Over the years much evidence for the existence

of dark matter has been accumulated. These include the rotational speed of

spiral galaxies[31], discrepancies between gravitational potential mater density

derived from gravitational lensing and observable matter [32], and anisotropy

measurements of the cosmic microwave background [33]. Many dark matter

candidates have been proposed and most have been discarded. However, all re-

maining candidates can account for only a small fraction of dark matter present

in the universe. As it is unlikely that many different factors are contributing, the

most likely scenario is that a new unknown fundamental particle is responsible

for dark matter.

Dark matter particles produced in the big bang which survive until today are

generically called weakly interacting massive particles (WIMPS). Any such par-

ticle are beyond the SM.

• There are questions of why there are so many different types of matter particles,

why the quark and neutrino flavours mix in the way they do, and why the matter

particles are grouped in three generations. All three are present in the SM but
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there is no intrinsic reason for them. Idealistically it would be hoped that the

model would explain the reason why there so many particles.

• Matter-Antimatter Asymmetry: Dirac predicted the existence of antimatter parti-

cles with the same masses as conventional particles, but opposite internal prop-

erties such as electric charges. It has been predicted and verified experimentally

that every known kind of particle has a corresponding antiparticle. However, it

is puzzling that the universe does not have equal amounts of matter and anti-

matter. Moreover there is no evidence that there are any major concentrations

of antimatter in the universe. To account for this disparity either the universe

began with a small preference for matter, or the universe was originally perfectly

symmetric, but somehow a set of phenomena contributed to a small imbalance

in favour of matter over time. Baryogenesis and leptogenesis are the proposed

processes that created the asymmetry between baryons and the asymmetry be-

tween leptons in the early universe resulting in the observed dominance of mat-

ter over antimatter. Sakharov proposed three conditions that are necessary for

the baryogenesis[34]: Baryon number violation, C- and CP-violation, as well as

the departure from thermodynamic equilibrium. The first, and to a lesser extent

the second condition are difficult to realise in the SM with the required rates and

suggest physics beyond the SM.

The significance of these problems varies. The gauge hierarchy is essentially not a

flaw in the SM but rather a disturbing sensitivity of the Higgs potential to new physics

in almost any imaginable way. Possible solutions include [35]:

• the existence of new physics at energies not much above the electroweak energy

scale which would regularise the quadratic divergences.

• a cut-off ΛUV which is much closer to the electroweak scale than currently antic-

ipated.

• the SM is simply finely tuned.

Supersymmetry is one of the popular and attractive scenarios for physics beyond

the SM. It solves the hierarchy problem through cancellation between the various

contributions (known as regularisation by new physics). All SM fermion correction

terms are accompanied by corresponding scalar terms, with opposite sign, from su-

persymmtery. To avoid the need for fine tuning, the masses of the supersymmetric

particles need to be less than approximately a few TeV[36].
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The additional supersymmetric particles can alter the three gauge couplings in such a

way that their strengths merge at approximately 1016 GeV . Figure 2.3 compares the

SM with the supersymmetry predictions for the running of the gauge couplings.

Finally, supersymmetry can provide a candidate for dark matter. The lightest super-

symmetric particle would, in many supersymmetry models, provide a suitable WIMP

candidate for dark matter. In order to generate the observed relic dark matter density,

the mass of such a WIMP should not exceed - (1 TeV )[37].

Another proposed theory for dealing with the hierarchy problem is that there are

additional dimensions of space. In addition to the three spatial dimensions that we

know, postulated additional dimensions are curled up so small that they are invisible.

This idea is not new (first proposed by Kaluza and Klein over 80 years ago), but has

been gaining favour in recent years when it was realised that string theory predicts the

existence of extra dimensions of space [38]. According to string theory, elementary

particles are not point like, but are objects extended along one dimension (a string)

or are membranes with more dimensions[39].

Until only recently string theory was thought to be a very elegant model but had no

physical manifestation. It was then realised that at least some of the new dimensions

might be much larger than originally believed and possibly observable at the LHC.

It is speculated that gravity is strong when extra dimensions appear and according

to some variations of string theory, microscopic black holes might be produced by

the LHC[40]. However, they would be short-lived, decaying rapidly through thermal

“Hawking” radiation.

To determine the true solutions to these problems further evidence and hence exper-

imentation is required. The LHC is now the key project capable of producing and

searching for the Higgs and physics beyond the SM.



3
CHAPTER

THE LHC AND THE ATLAS EXPERIMENT

The construction of the Large Hadron Collider (LHC) and its detectors has been com-

pleted and both machine and detectors are now ready for operation. Low energy

collisions began at the LHC in November 2009.

This chapter provides a brief overview of the LHC machine and the ATLAS detector.

Section 3.1 details the machine parameters and the effects of minimum bias and pile-

up. Section 3.2 introduces the ATLAS detector, the motivations for the chosen detector

design, and lists the key performance goals.

3.1. The Large Hadron Collider

The Large Hadron Collider, based at CERN in Geneva, is designed to provide proton–

proton (p–p) collisions at a centre-of-mass energy of 14 TeV, with a luminosity of

1034 cm−2 s−1 and a proton bunch-crossing rate of 40 MHz. The LHC has also been

designed to collide heavy ions (lead nuclei), with an energy of 2.8TeV per nucleon at

a peak luminosity of 1027 cm−2 s−1.

15



16 The LHC and the ATLAS experiment

Point 5

CMS

Point 6

Point 7

Point 8

ATLAS

Point 1
Point 1.8

SPS

Point 2

Point 3.3

Point 3.2

Point 4

Existing Buildings

LHC Project Buildings

ALICE

LHC-B

Figure 3.1.: Civil engineering structure of the LHC tunnel and underground structures hous-

ing the detectors [2]. Structure originally from LEP are shown in white while

new structures for the LHC are in red.

While a brief overview is given here, a detailed description of the design of the LHC

machine can be found in[2], as well as in the Design Reports[41–43].

The construction of the accelerator made use of the extensive infrastructure already

in place at CERN in order to save costs. As such the LHC ring has been installed in the

26.7 km long and 3.7 m wide (in the arcs) tunnel that was constructed earlier for the

CERN Large Electron–Positron (LEP) machine. It lies between 45 m and 170 m below

the surface on a plane inclined at 1.4%.

Driven by physics aims, namely the discovery of rare processes, the LHC has been

designed to provide a high luminosity at high energy. The rate at which a given

physics process is generated is given by R = Lσ, where L is the machine luminosity

and σ is the cross section of the physics process in question. The cross section is a

purely physics quantity dependant upon the collision energy, whereas the luminosity

is entirely dependent on the machine parameters. Hence the study of rare processes

requires high beam energies and high beam currents.
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Beam parameters

Collision type proton–proton

Centre-of-mass energy 14TeV

Bunch-crossing rate 40.08 MHz

Number of bunches (NB) 2808

Number of particles per bunch (Np) 1.15 ·1011

Stored energy per beam 362MJ

Full crossing angle (θC) 285µrad

Luminosity related parameters

RMS bunch length (σz) 7.55 cm

RMS beam size (σt) 16.7µm

Nominal peak luminosity L 1034

Table 3.1.: Summary of the key LHC parameters[41]. The parameters θC , σz , σt , F , and L

displayed are specific to the ATLAS and CMS interaction points.

The luminosity of a collider can be approximated by

L =
nbN 2

p frev

4πσ2
t

,

where nb denotes the number of bunches, frev is the revolution frequency, Np is the

number of particles per bunch, and σt is the transverse beam size at the interaction

point (IP). The crossing angle θC of the beams at the IP reduces the luminosity by a

geometric factor (F), which at small crossing angles be approximated to

F ≈
-

1+

)
θCσz

2σt

*2
.−1/2

,

where σz is the longitudinal beam size at the IP. Table 3.1 lists the key parameters of

the LHC accelerator.

The LHC accelerator is a two-ring, superconducting, hadron accelerator and collider.

The majority of the LHC is comprised of 1232 superconducting dipole magnets which

bend the beams of charged particles around the LHC ring. The magnets are twin

bore, consisting of two sets of coils and beam channels within the same mechanical

structure and cryostat. This design was required to accelerate two beams of equally

charged particles in opposite directions within a small area. The dipole magnets can
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generate magnetic fields of up to 8.33 T. The coils are made of niobium-titanium

(NbTi), a material that is superconducting at 1.9 K. In addition to the dipole magnets

there are also 392 quadrupole magnets for beam focusing and beam corrections and

also sextupole, octupole and decapole magnets which are mainly used to compensate

for systematic non-linearities.

The LHC machine is supplied with protons or heavy ions from the existing accelerator

complex at CERN. This comprises both linear and ring accelerators, which have all

been upgraded to meet the demanding requirements of the LHC to provide a proton

injection energy of 450GeV into the main LHC ring.

The LHC will provide collisions at four interaction points (IPs). At each IP a detector

is located (see Figure 3.1):

• ATLAS (A Toroidal LHC Apparatus)[1] is a general-purpose detector located at

point 1 on the LHC (see also Section 3.2);

• CMS (Compact Muon Solenoid)[44] is a general-purpose detector and located

at point 5;

• LHCb [45] is a dedicated detector for precision measurements of CP violation

and rare decays of B hadrons and is located at point 8;

• ALICE (A Large Ion Collider Experiment) [46] is a general-purpose, heavy-ion

detector which focuses on QCD and the strong-interaction sector of the SM at

very high energy densities, located at point 2.

In addition to the main experiments the LHC accommodates two smaller experiments,

located some distance from the IPs:

• LHCf [47] is an experiment dedicated to the measurement of neutral particles

emitted in the very forward region of LHC collisions;

• TOTEM[48] is an experiment to measure the total p–p cross section with a lu-

minosity independent method and study elastic and diffractive scattering at the

LHC.

The experimental conditions produced by the proton–proton collisions of the LHC

are quite challenging. As the total inelastic p–p cross section at the nominal LHC

energy (
*

s = 14 TeV) is expected to be approximately 79 mb [27], the expected

p–p interaction rate is nearly 1GHz at high luminosity (L = 1034 cm−2 s−1) which
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translates to an average of 25 interactions per bunch-crossing[49]. The vast majority

of these interactions, however, are soft and generate little transverse momentum (pT )

as they stem from long-range p–p interactions.

So called “Minimum-bias” events, make up the majority of events produced by the

LHC and are dominated by the soft interactions mentioned above (due to their huge

abundance), but hard interactions can contribute. Experimentally, the definition of

minimum-bias events depends on the experiments trigger, however it is usually asso-

ciated to non-single-diffractive events, given by σNSD = σinel.−σSD = 65mb[50].

The soft interactions which are found in every event, can be seen as noise superim-

posed upon all events. Furthermore, if a detector element has a readout latency that

exceeds the bunch spacing (25 ns at the LHC) it will result in detector signals arising

from previous bunch-crossings in the current event. The combination of both effects

form what is known as called “pile-up”. The effects of pile-up have had a strong

impact on the design of all LHC detectors and will influence physics analyses.

As the LHC is generally endeavouring to find high mass particles the events that are

of interest will involve a hard scattering. However, with every hard scattering there

is an associated underlying event which is called the “soft” part of the event. Unlike

minimum-bias interactions, the underlying event arises from the same p–p interaction

as the hard scattering of interest. The typical definition of the underlying event is that

it is everything that arises from the p–p collision except the hard scattered particles.

3.2. The ATLAS Detector

The following section introduces the ATLAS detector and its main sub-detectors. A

comprehensive description of ATLAS can be found in[1] as well as in the Technical

Design Reports (TDRs) for the overall technical design[51]. Details of the expected

performance of ATLAS can be found in[49].

The design of the ATLAS detector has been driven by its main physics goals: the

search for the origin of electroweak symmetry breaking and the search for new physics

beyond the SM. These physics studies coupled with the challenging conditions at the

LHC determine the requirements for the performance of ATLAS[49,51].
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The high rate of collisions at the LHC requires that event selection (triggering) is

very fast, with precise timing and low latency. Given that the interaction rate, at

peak luminosity, is expected to be about ∼ 1 GHz (40 MHz × ∼ 25 interaction per

bunch crossing) the initial trigger (Level 1) will be required to have efficient pattern

recognition to reduce the data rate to a more manageable rate (75 kHz). Two next

trigger levels are the Level-2 trigger and the event filter and are collectively known as

the High Level Trigger (HLT). The HLT continues the processing and selection, prior

to the event being stored onto disk (200 Hz) (see Section 3.2.6 for more details on

the Trigger). The number of events being written to disk coupled with an events size

- (1.5 MB/event) results in a data rate of ∼ 300 MB/s. This requires powerful data

processing and distributed analysis.

At full luminosity the charged particle multiplicity in a bunch crossing is expected to

be - (1000). In order for the detector to be able to discriminate between events the

detector must have a very highly granulated tracking detector.

The high flux of particles through the detector ensures that the rate of irradiation over

the lifetime of the experiments at the LHC is phenomenal (5× 1014 neq/cm2 over 10

year ). This high dose requires that all components of the detector are radiation hard

and all electronics are radiation tolerant.

In addition to the proton–proton collisions there will also be a high background rate

from beam halo, neutron and beam-gas collisions. These mainly effect the muon

detector system, requiring that the detector timing is precise, pattern recognition is

redundant and the detector is radiation hard.

Table 3.2 summarises the ATLAS detectors key performance goals [1]. The overall

ATLAS detector layout is shown in Figure 3.2. With a diameter of 25m, a length

44m and a total weight of approximately 7000 tonnes, ATLAS is the world’s largest

collider experiment. In the following sections, the main detectors and components of

the ATLAS experiment are introduced.

3.2.1. ATLAS coordinates system

Within ATLAS there are a number of different right-handed coordinate frames being

used. Of particular importance to the alignment and tracking are the global frame,

the local module frame and the measurement frame[52–54].
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Figure 3.2.: Cut-away view of the ATLAS detector[1].

Detector component Required resolution η coverage

Tracking σpT
/pT = 0.05%⊕ 1% ±2.5

EM calorimeter σE/E = 10%/
*

E ⊕ 0.7% ±3.2

Hadronic calorimeter (jets)

barrel and end-cap σE/E = 50%/
*

E ⊕ 3% ±3.2

forward σE/E = 100%/
*

E ⊕ 10% 3.1<
+
+η
+
+ < 4.9

Muon spectrometer σpT
/pT = 10% at pT = 1TeV ±2.7

Table 3.2.: Summary of the key ATLAS performance goals[1]. The units for Energy, E, and

Transverse momentum, pT , are in GeV. Note that for high-pT muons, the muon

spectrometer can work independently of the Inner Detector system.
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ATLAS Global Frame

The ATLAS global frame (x , y, z) is the frame in which the origin lies at the nominal

IP of the proton-proton collisions. This origin is also the nominal center of the ATLAS

detector as shown in Figure 3.3, where the z-axis is along the beam direction, the

y-axis points to the surface and the x -axis is the horizontal axis pointing towards the

centre of the LHC tunnel.

Y

X

Z

Side A Side C

Figure 3.3.: Global coordinate frame of ATLAS.

In this coordinate frame the +z direction (also known as side-A) points in the di-

rection of the nominal solenoid B-field. In the global frame a cylindrical coordinate

system is created where the polar angle θ is measured from the positive z-axis cover-

ing the range θ ∈ [0,π), the azimuthal angle φ is measured in the x -y-plane so that

the positive x -axis has an azimuthal angle of φ = 0 and the positive y-axis an az-

imuthal angle of φ = π/2, when φ covers the range φ ∈ [0, 2π). The azimuthal and

polar angles can be calculated via the momentum components using the following

relations

tanφ =
py

px

, (3.1)

cotθ =
pz

pT

, (3.2)
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where px , py and pz denote the components of the momentum corresponding to the

global frame and pT is the transverse momentum with respect to the beam axis, i.e.

pT =
,

p2
x
+ p2

y
= p sinθ .

The pseudorapidity, η, is defined to be

η=− loge

)

tan

)
θ

2

**

. (3.3)

Local Module Frame

The local module frame (x ′, y ′ and z′) is different for each detector element. The

origin is placed in the centre of each detector module (The various modules that

make up the Inner Detector of ATLAS are the pixel, SCT and TRT modules and are

described in Section 3.2.3). The x ′-axis is parallel to the most sensitive measurement

direction within the modules. For the pixel wafers, the x ′-axis across the direction of

the short side of the modules, and in the direction crossing the strips and the straws

for the SCT and for the TRT, respectively. The y ′-axis parallel to long side of modules

is in the pixel wafer, parallel to the strip direction on the non-stereo side in the SCT

and parallel to the straw direction in the TRT.

Therefore for all Inner Detector module types, in the barrel part of the detector, the y ′-

axis in the module frame is always parallel to the z-axis of the global reference frame

and in the end-cap regions y ′-axis is radial. The x ′-axis is in the rφ direction in the

global frame. Finally in this frame the z′-axis is perpendicular to the module plane

in all cases and it is orientated to give a right-handed system. This is going outward

radially in the barrel and in the negative global z-axis direction in the end-cap.

Measurement Frame

The measurement frame is the coordinate frame in which the residuals are calculated

[55]. For the pixel detector the measurement frame is equal to the module frame.

For the SCT there are two separate sides to the wafer that have are slight stereo

rotation, and as a result each SCT module has two separate measurement frames.

Both frames are defined such that the y-axis is aligned parallel to the strip direction,

and the x axis is perpendicular to the strips. The TRT measurement frame has the

x -axis perpendicular to both track and straw, the y-axis parallel to the straw and the
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z’

x’

y’

Figure 3.4.: Schematic diagram of the local coordinate frame.

z-axis perpendicular to x and y. In this case, the origin is the middle of the straw wire.

Defining the TRT frame in this manner is motivated by the fact that the drift time of

the TRT hit is a measurement of the distance between track and wire, i.e. |x | in the

measurement frame.

z

x

y

x

z

y

Figure 3.5.: Schematic diagram of the measurement frame for a SCT. The two sides of the

module can been seen due the small stereo angle between them.



The LHC and the ATLAS experiment 25

3.2.2. Magnet System

On of they design elements of the ATLAS detector is its magnet system, shown in Fig-

ure 3.6. Consisting of three large air-core toroids (two end-caps and one barrel) and

a solenoid, the magnet system has been one of ATLAS’ most challenging engineering

accomplishments due to its unusual configuration and large size[56].

The toroidal design of the muon magnet system is one the unique aspects of the ATLAS

detector. As one of the performance goals of ATLAS is to measure muon momentum to

within 10% at 1 TeV, a strong magnetic field over a large volume is required. Each of

the three toroids consist of eight superconducting coils powered by a 20.5 kA power

supply[57,58]. The barrel toroid coils are individually housed in their own cryostats,

while the each end-cap toroid is housed in one a large cryostat. The barrel toroid sys-

tem weights 830 tonnes and is 25.3 m in length and has an inner and outer diameter

of 9.4 m and 20.1 m respectively. The two end-cap toroids are each 5 m in length and

have an outer diameter of 10.7 m and weigh 240 tonnes.

The magnetic field of the toroidal magnet system is quite inhomogeneous as bending

power is lower in the transition region where the magnets overlap. However, the

bending power of the magnets is considerable;
∫

Bdl is 1.5 to 5.5Tm in the range

|η| < 1.4 (barrel toroid) and approximately 1 to 7.5Tm in the region 1.6 < |η| < 2.7

(end-cap toroids).

The central solenoid is designed to provide a 2T axial magnetic field for the Inner

Detector and is powered by an ∼ 8kA power supply [59]. Located in between the

electromagnetic calorimeter and the Inner Detector, it has been designed to min-

imise the upstream material which degrades the performance of the electromagnetic

calorimeter. As such, it requires that the solenoid windings and the electromagnetic

calorimeter share a common vacuum vessel. The magnetic flux of the solenoid is

returned in the steel of the hadronic calorimeter and its support structure. The in-

ner (outer) diameter of the solenoid is 2.46m (2.56m), the axial length is 5.8m and

weighs 5.4 tonnes.

The solenoid is shorter than the ID itself, which makes the field quite inhomogeneous

in the forward region. Figure 3.7 shows the z and R components of the magnetic

field (referred as Bz and BR) as a function of z and radius (R). One can see that

the z component of the field drops from 2 T to 1 T at the end of the tracker, while

the R component reaches up to 0.6 T in the forward region. The inhomogenity of
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end-cap�toroid

barrel�toroid

solenoid

tile�calorimeter,
return�yoke

Figure 3.6.: Arrangement of the ATLAS magnet windings and the tile calorimeter steel [1].

The solenoid windings are situated inside the calorimeter volume. The tile

calorimeter is modelled by four layers with different magnetic properties, plus

an outside return yoke.

the magnetic field at the end-caps enforces the use of a field map in simulation and

reconstruction.
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Figure 3.7.: BR and Bz fields of the solenoid as a function of R and z respectively[49].

In the ATLAS solenoid magnet, the integral
∫

Bdl drops from about 2 Tm at |η| = 0

to about 0.5 Tm at |η| = 2.5, for two reasons: the field strength in the end-caps is
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lower than in the barrel, and tracks in the very forward region (|η| > 1.85) exit the

tracker before reaching the solenoid.

The resolution of the reconstructed momentum of particles in the Inner Detector is

directly related to the bending power of the magnet. The reconstructed momentum

p is related to the magnetic field by

p = 0.299792458 Bρ, (3.4)

where p is measured in GeV/c, B the value of the magnetic field given in Tesla and ρ

the radius of the track curvature given in meter. As such, for a particle to escape the

solenoid field it must have a momentum in the transverse direction of at least ≈ 0.66

GeV/c.

As the transverse momentum of a particle increases it will be deflected less by an

axial magnetic field. Combining this with the fact that the detector modules have a

finite resolution provides a theoretical limit on the maximum momentum that can be

measured.
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Figure 3.8.: Sagitta definition of a track in the x -y plane (global frame).

The sagitta, s, describes the maximal deflection of the track from a purely linear

path (see Figure 3.8). A chord, constructed in the transverse plane, connects the

vertex point with the track position at the outer most point of the detector. The

sagitta is defined to be the distance between the midpoint of the chord and the arc
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of the trajectory. The relationship between s and ρ can be obtained using Pythagoras

Theorem

ρ =
(r/2)2 + s2

2s
. (3.5)

Given that the detector radius is 1.1 m, and if we assume that the smallest statistically

significant sagitta we can measure is 50 µm, an upper limit of ∼ 2TeV is determined.

3.2.3. Inner Detector

Figure 3.9.: Cut-away view of the ATLAS Inner Detector[1].

The ATLAS Inner Detector (ID), immersed in the 2T magnetic field generated by

the central solenoid, is designed to provide robust pattern recognition, excellent mo-

mentum resolution and accurate vertex measurements for charged particles above a

nominal pT threshold of 0.5GeV. The Inner Detector is able to provide precision mea-

surements over a range of |η| < 2.5 which is matched by the precision measurement

range of the electromagnetic calorimeter.

It consists of three sub-detectors: the pixel detector, a semiconductor tracker (SCT),

and a transition radiation tracker (TRT), shown in Figure 3.9. The three independent

sub-detectors of the ID are complementary; the combination of precision trackers at
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Figure 3.10.: Schematic view of a quarter-section of the ATLAS Inner Detector showing each

of the major detector elements with its active dimensions and envelopes[1]

small radii together with the TRT at larger radius gives robust pattern recognition and

high precision in both rφ and z coordinates.

A comprehensive description of the ATLAS ID can be found in [1,60–65]. A brief

summary of the ID sub-detectors is given in the following.

Pixel Detector

The pixel detector is designed to perform high-precision particle tracking in a hostile

environment. It is vital for the accurate reconstruction of primary and secondary

vertices, which in turn are crucial for the identification of long lived particles such as

b-quarks and τ-leptons.

The pixel detector will have a higher flux density of particles through it than any of

the other detectors (158 kGy/year or 0.2 × 1015 neq cm−2 per year at high luminosity

compared with 8 kGy/year for the next subdetector [1]) and as such it needs to be

radiation hard. To ensure that particle trajectory is not perturbed too much by mate-

rial interactions the modules have been designed to ensure that a single pixel module
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does not exceed 1.2% of a radiation lengths, X0 (see Appendix A for details about

particle material interactions)

The detector is comprised of three cylindrical layers in the barrel, and three disks in

each of the forward regions. This ensures complete coverage of the region |η| <2.5.

The distances of the three barrel layers to the beamline are 5.05, 8.85 and 12.25

cm respectively, while the distance of the end-cap disks to the centre of the detector

is 49.5, 58.0 and 65.0 cm (see Figure 3.10). The layers and disks are fitted with

identical silicon pixel modules like the one shown in Figure 3.11.

Each pixel module consists of a single silicon sensor which has highly doped n+ im-

plants on a n-type substrate. Each sensor has a active area of 16.4 mm × 60.8 mm

and are 250 µm of thick. The sensors are divided into 47268 pixels which are con-

nected to 16 front-end readout chips. There the majority of the pixels are, 50 µm ×
400 µm (41984 pixels in total) while a small number are larger and 50 µm × 600 µm

(5284 pixels in total) (see Figure 3.11). The lager sized pixels are necessary to cover

the gap between the readout chips. These front-end chips are arranged in two rows

and bump bounded to the sensor (46080 channels in total).

As there is an inadequate number of readout channels per module to allow for ev-

ery pixel to read out, the last eight pixels rows are connected to only four channels

(“ganged” pixels). This leads to a two-fold ambiguity in 5% of the hits which is

resolved offline. The intrinsic resolution of the pixel modules is 10 µm in the rφ

(transversal) direction and 115 µm in the z (longitudinal) direction, and is a direct

two dimensional readout.

There are 1744 identical pixel modules in ATLAS, 1456 in the barrel and 288 in the

end-cap disks. The barrel modules are arranged along staves (112 staves in total with

13 modules per stave). Overlaps between sensitive wafers are achieved by having

modules tilted by 1o relative to the global z-axis (see Section 3.2.1 for the coordinate

system definition). The staves lie parallel to the beam axis, overlap with each other

and are mounted at a tilt angle of −200 . In addition to this the staves are grouped

on carbon fibre half-shells which form the barrel layers. Finally, there are 48 end-cap

sectors with 8 sectors per disk, each containing 6 modules.

The complete pixel detector has a sensitive area of 2.2 m2 with ∼80 million readout

channels as can be seen in Table 3.3.
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Structure Layer/Disk R/Z (mm) Staves/Sectors Modules Pixels

Barrel

Layer-0 50.5 22 286 13.2 ·106

Layer-1 88.5 38 494 22.8 ·106

Layer-2 122.5 52 676 31.2 ·106

End-cap

Disk 1 495 8 48 2.2 ·106

Disk 2 580 8 48 2.2 ·106

Disk 3 650 8 48 2.2 ·106

Total 1744 80.4 ·106

Table 3.3.: Summary table of the Pixel detector for each of the barrel layers and end-cap

disks.

Figure 3.11.: Schematic view of a pixel module illustrating the major pixel hybrid and sensor

elements. At the bottom there is a plan view showing the bump-bonding of the

silicon pixel sensors to the polyimide electronics substrate[1].

SCT

The SemiConductor Tracker (SCT) is a silicon microstrip detector and surrounds the

pixel detector covering a pseudorapidity range of |η|< 2.5. The purpose of the SCT is

to provide precision track measurements in the intermediate radial region, contribut-



32 The LHC and the ATLAS experiment

ing to the measurements of the momentum and vertex position. The detector consists

of four cylindrical layers in the barrel and nine end-cap disks on each side. The dis-

tances of the four barrel layers with respect to the beamline are 29.9 cm, 37.1 cm,

44.3 cm and 51.4 cm and are symmetric around the IP while the distance of end-cap

disks are 85.38 cm, 93.40 cm, 109.15 cm, 129.99 cm, 139.97 cm, 177.14 cm, 211.52

cm, 250.50 cm and 272.02 cm (see Figure 3.10). The layers and disks are mounted

on carbon-fibre structures and are filled with silicon microstrip modules.

Figure 3.12.: Schematic view of a SCT barrel module illustrating its different components

including the silicon wafers[1].

There are a number of different types of SCT modules used within the SCT. Generally

a module consists of four silicon wafers, two each on the top and bottom side. Each

side has 768 silicon microstrips each which are glued together back-to-back at a 40

mrad stereo angle. The silicon wafers are 285 µm thick, single sided and consist

of highly doped p+ readout implants in a n−type silicon bulk. Each silicon wafer

provides a one dimensional position measurement.

In the barrel, the module side parallel to the global z is called rφ side and the other

is known as the stereo side. Each side is built from two bonded 6 cm × 6 cm silicon

sensors (to reduce the construction costs). The readout is performed by means of 12

(6 per side) binary front-end chips. Figure 3.12 shows a schematic view of a SCT

barrel module where its different components are labeled.
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The SCT has 4088 modules in total, 2112 barrel modules and 1976 end-cap modules.

All barrel modules are identical and rectangular in shape while there are three dif-

ferent module shapes for the end-caps, namely outer, middle and inner according to

their position in the end-cap wheels.

The strip pitch is only constant in the barrel module, which is 80 µm. The end-cap

modules have a fan-out structure where the strip pitch varies from 54.53 µm to 90.34

µm, depending the wafer position. The resulting resolution of the barrel modules is

23 µm precision in rφ. The combination of measurements for either side (at a small

stereo angle) allows for the reconstruction of a three dimensional spacepoint. Once a

three dimensional spacepoint is built, the intrinsic resolution of a whole SCT module

is 17 µm in rφ direction and 580 µm in the z/r direction .

The tables 3.4 and 3.5 contain a summary of the main properties of the SCT detector

for the barrel and the end-caps respectively. The SCT modules cover a surface of 61.1

m2 of silicon with ∼6.3 million readout channels providing almost hermetic coverage

with at least four precision spacepoint measurements per crossing particle over the ID

coverage.

In the barrel of the SCT the modules were mounted onto staves. These staves were

mounted on the barrel with a tilt angle of 11o leading to an overlap of 4 mm between

modules. The final construction of the end-cap disks is quite complicated as each disk

have a different number and type of SCT end-cap modules as can be seen in Table

3.5.

Layer Radius (mm) Modules Area (m2) Barrel length: 1.4934 m

1 300.0 12 × 32 6.26 Strip pitch: 80.0 µm

2 373.0 12 × 40 7.82 No. of modules: 2112

3 447.0 12 × 48 9.4 Total area: 34.4 m2

4 520.0 12 × 56 10.96 No. of channels: 3244032

Table 3.4.: Summary of the properties SCT Barrel.
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Module Radius (mm) Modules

z (mm) [Inner/Outer] [I / M / O] Strip pitch [min/max] (µm)

835.0 336 / 560 - / 40 / 52 Inner: 54.53 / 69.43

925.0 259 / 560 40 / 40 / 52 Middle: 70.48 / 94.74

1072.0 259 / 560 40 / 40 / 52 Outer: 70.92 / 90.34

1260.0 259 / 560 40 / 40 / 52

1460.0 259 / 560 40 / 40 / 52 No. of modules: 1976

1695.0 259 / 560 40 / 40 / 52 Total area: 26.7 m2

2135.0 336 / 560 - / 40 / 52 No. of channels: 3035136

2528.0 401 / 560 - / 40 / 52

2788.0 440 / 560 - / - / 52

Table 3.5.: Summary of the properties SCT end-caps.

TRT

The TRT consists of straw tubes, 4mm in diameter, that cover a range up to |η|< 2.1.

The TRT will provide on average more than 30 measurements per track. It measures

precisely only R−φ coordinates with an intrinsic accuracy of 130µm per straw. In the

barrel region, the 144cm long straws are parallel to the beam axis. Their wires are

divided into two halves at approximately η= 0. In the end-cap region, the 37cm long

straws are arranged radially in wheels. The total number of TRT readout channels

is approximately 351 thousand. The TRT’s capability to detect transition-radiation

photons enhances the overall ATLAS electron identification performance.

The TRT straw hits contribute significantly to the momentum measurement, since the

lower precision per point is compensated by the larger number and longer measured

track length.

Material budget

Particles that traverse the ID will interact, to varying degrees, with the material of

the makes up the ID ( e.g. sensors, cables, support structures etc.). The effect of

such interactions need to be taken into account during the reconstruction of these

particles. The dominant effects are:
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• Multiple Coulomb Scattering (MCS), causing particles to deviate from their ideal

trajectory (see Section A.2 ).

• Bremsstrahlung, causing charged particles, especially electrons, to radiate en-

ergy (see Section A.1.3).

• Photon conversion, causing photons to convert into an electron-positron pair

(γ→ e+e−).

• Hadronic interactions, between hadrons and the detector material can cause the

hadrons to produce a stream of secondary particles.

With an overall weight of ∼4.5 tonnes, the ATLAS ID has much more material than

any previous tracking detector. The amount of material has kept to a minimum by

using light-weight, low-Z materials like carbon fiber for the support structures. Fig-

ure 3.13 shows the amount of material that a particle traverses as a function of the

pseudorapidity. The material is expressed in terms of radiation lengths (X0)(see Ap-

pendix A). This amount of material placed before the electromagnetic calorimeters

has a detrimental effect on their performance as some particles may lose significant

amounts of energy prior to entering the calorimeters.
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Figure 3.13.: Material distribution within the Inner Detector as a function of |η| and aver-

aged over φ. Including the services and thermal enclosures. The breakdown

indicates the contributions of external services and of individual subdetectors,

including services and their thermal enclosures in their active volume[1].
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Figure 3.14.: Cut-away view of the ATLAS calorimeter system[1].

3.2.4. Calorimetry

The ATLAS calorimeter system, shown in Figure 3.14, covers a range of |η| < 4.9

using different techniques suited to the widely varying requirements of the physics

processes of interest and of the radiation environment over this large η-range. It

accommodates an electromagnetic (EM) calorimeter, a hadronic calorimeter, and for-

ward calorimeters (FCal).

The ATLAS calorimeters, with 22 − 24 X0 and about 10 interaction lengths (λ) for

the EM and hadronic detectors respectively, provide good containment for EM and

hadronic showers, which is vital to provide good energy resolution, and also for lim-

iting punch-throughs into the muon system. The large η-coverage ensures good miss-

ing energy measurements, which is particularly important for searches of beyond the

standard model physics. A brief description of each of the sub-detectors follows but a

full description can be found in [1] and in the ATLAS calorimeter TDRs[66–68].
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EM calorimeter

The EM calorimeter is constructed in two main sections; a barrel section covering the

region |η| < 1.475 and two end-caps (EMEC) covering the region 1.375 < |η| < 3.2.

The EM calorimeter is a liquid-argon (LAr) sampling detector with accordion-shaped

kapton electrodes and lead absorber plates which provides complete φ symmetry

without azimuthal cracks (see Figure 3.15). The barrel is divided into two identical

half-barrels that are separated by a small gap (4mm) at z = 0. Each EMEC is mechan-

ically divided into two coaxial wheels. The barrel and two EMECs are each housed in

their own cryostat. The total thickness of the EM calorimeter is > 22 X0 in the barrel

and > 24 X0 in the end-caps.

The EM calorimeter is segmented for precision measurements within |η|< 2.5 region

(to match the ATLAS ID). It is segmented into three longitudinal sections with varying

granularities depending on η. The middle section, for instance, consists of square

towers of ∆η×∆φ = 0.025× 0.025 for |η| < 2.5, see Figure 3.15.The EMEC inner

wheel (|η|> 2.5) is segmented into two longitudinal sections and has a coarser lateral

granularity.

To account for the significant amount of material in front of the calorimeter a presam-

pler detector (active LAr layer) is used to correct for energy losses due to up-stream

material. In total there are more than 170 thousand readout channels in the EM

calorimeter.
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Hadronic calorimeter

The hadronic calorimeter consists of a barrel covering the region |η| < 1.0, two ex-

tended barrels covering the region 0.8 < |η|< 1.7, and two hadronic end-caps (HEC)

covering the region 1.5 < |η| < 3.2. The barrel and extended barrels, known as the

Tile barrel and Tile extended barrel, are sampling tile detectors using steel as the

absorber and scintillating tiles as the active material. The HEC is a sampling LAr

detector.

The Tile barrel and extended barrels are placed directly outside the EM calorimeter.

All Tile calorimeters are divided into 64 modules in the azimuthal direction and into

three layers longitudinally. The longitudinal divisions are approximately 1.5, 4.1, and

1.8 λ thick in the barrel and 1.5, 2.6, and 3.3λ in extended barrels. The scintillating

tile is read out by wavelength shifting fibres into two separate photomultiplier tubes.

The granularity is∆η×∆φ = 0.1×0.1 for the barrel and extended barrels in the first

two layers and ∆η×∆φ = 0.2× 0.1 for the last layer.

The HEC calorimeter consists of two independent wheels per end-cap and are located

located directly behind the EMEC and share the same cryostat. Each wheel is built

from 32 identical wedge-shaped modules, and is divided into two longitudinal seg-

ments. The granularity is ∆η×∆φ = 0.1× 0.1 in the region 1.5 < |η| < 2.5 and

∆η×∆φ = 0.2× 0.2 in the region 2.5< |η|< 3.2.

FCal calorimeter

The FCal is a LAr copper or tungsten detector and is integrated into the end-cap

cryostats. It is approximately 10λ deep, and consists of three modules in each end-

cap: the first is made of copper, and is optimised for EM measurements, while the

other two, made of tungsten, predominantly measure the energy of hadronic interac-

tions.

3.2.5. Muon Spectrometer

The ATLAS muon spectrometer, shown in Figure 3.16, is designed to provide precision

muon momentum measurements and a stand-alone trigger subsystem[69]. The muon

spectrometer consists of separate trigger and high-precision tracking chambers, and
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Figure 3.16.: Cut-away view of the ATLAS muon spectrometer[1].

utilises the large superconducting air-core toroid magnets to deflect muon tracks that

pass through it. In the barrel region, tracks are measured in chambers arranged in

three cylindrical layers around the beam axis; in the end-cap regions, the chambers

are installed in planes perpendicular to the beam again in three layers.

Precision measurements of the track coordinates in the bending direction of the mag-

netic field are provided by the Monitored Drift Tubes (MDTs) and by Cathode Strip

Chambers (CSCs) in the region |η|< 2.7. The CSCs are multiwire proportional cham-

bers with cathodes segmented into strips. The stringent requirements on the relative

alignment of the muon chambers are met by a combination of precision mechanical-

assembly techniques and optical alignment systems.

The muon trigger subsystem consists of Resistive Plate Chambers (RPCs) in the barrel

and Thin Gap Chambers (TGCs) in the end-cap regions. A trigger subsystem pro-

vides well-defined pT thresholds through the systems excellent time resolution and

measures the muon coordinate in the direction orthogonal to that determined by the

precision-tracking chambers.
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Figure 3.17.: Schematic view of the ATLAS TDAQ system.

3.2.6. Trigger and Data Acquisition

The ATLAS trigger and data acquisition system (TDAQ) is based on three distinct

levels of on-line event selection: level-1 (LVL1), level-2 (LVL2), and event filter (EF)

(see Figure 3.17) [70,71]. LVL2 and EF together form the high-level trigger (HLT).

Each trigger level refines the decision made at the previous level, reducing the data

rate at each level by adding additional selection criteria. The trigger system follows

an early rejection approach so that as soon as an event fails all trigger criteria of a

given level, it is rejected and will not and cannot be resurrected. Accepted events

must have passed through all processing steps. As nearly all events must be rejected

(1 GHz→ 200 Hz), this approach saves valuable processing time. In the following, a

brief overview is presented, also introducing the data acquisition system (DAQ).

The LVL1 trigger, based upon custom-made electronics, is designed to search for high-

pT muons, electrons, photons, jets, and hadronically decaying τ-leptons, as well as

large amounts of missing transverse energy and larger amounts of transverse energy.

The selection is based on information from a subset of detectors present in ATLAS:

muons are identified using the muon trigger chambers (RPCs and TGCs), the remain-

ing objects are identified using coarsely granulated information from the calorimeters.

The ID is not used in the LVL1 trigger. The LVL1 decision is made in less than 2.5µs

and has a maximum output rate of 75kHz.
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The HLT is a software based system running on large computing farms. The LVL2

trigger refines the LVL1 trigger objects (muons, electrons etc.). The full detector is

read out at full granularity and precision, however, only detector information around

the given LVL1 trigger objects (known as a Region Of Interest (ROI)) is actually pro-

cessed. This limits the required data transfers to an average of approximately 2% of

all available data. The LVL2 trigger is designed to reduce the rate to 3kHz, with an

event processing time in the order of 40ms (when averaged over all events).

The final trigger level, the event filter, further reduces the trigger rate to approxi-

mately 200Hz, with an average processing time of order of four seconds. The selec-

tion mechanisms are derived from off-line analysis procedures and utilises all detector

data.

The DAQ controls the movement of data down the trigger selection chain, as seen

in Figure 3.17. After LVL1 trigger accepts the event, it is buffered from the detector-

specific readout electronics. The requested event data is then transfered to the LVL2

trigger. If accepted by LVL2, all parts of the event data are combined and assembled

in the event builder nodes. The full event data is then moved by the DAQ to the EF

trigger. In case of an EF passing, the full event data is moved to permanent storage.

3.2.7. ATLAS Software: Athena

The amount of data produced by ATLAS, the complex nature of the detector and the

long lifetime of the experiment requires a flexible and adaptable software framework

that will ensure that the data is usable in the future and improvements can be made

to the software and detector.

An object orientated approach was deemed the optimal solution for such a com-

plex problem and C++ was chosen as the programming language for the majority

of the software development. Named Athena [72], the ATLAS software is based on

the framework known as Gaudi[73]. It ensures modularity by separating algorithms

and data structures. The framework itself provides a set of abstract and template base

classes while Athena is the collection of concrete implementations. Athena performs

tasks such as simulation, data reconstruction, analysis and monitoring.

Athena is also linked to a number of external packages: Geant4[74,75] is the simula-

tion engine used predominantly to determine the detector response; physics genera-
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tors such as Pythia[76] are integrated into Athena to study specific processes arising

from proton-proton collisions.
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Storage
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Figure 3.18.: The structure of the Gaudi framework[73].

The framework ensures that the requested algorithms are run in the correct order,

while offering common services and tools like message logging, access to data on disk

or remote disk servers to reduce unnecessary duplication of said tools and services.Job

options scripts, written in Python, supply instructions to the sequencing and control

block as well as providing algorithms and helper tools with run-time information.

In this framework algorithms are responsible for the manipulation of data objects. An

algorithm may call on a number of tools and services that may be common to a num-

ber of different algorithms. The output of an algorithm is stored in a common memory

area, called the “Transient Event Store” (TES), from where the next algorithm can re-

trieve the output for further processing. From the TES data can be written out to disk

(persistified) through the use persistency service.

The ATLAS offline software contains several databases which are needed in order to

allow the Athena to form its tasks. Storing information like the position, size and

orientation of each volume detector, calibration constants for the numerous detector

elements, and material locations within the detector, the databases combine in Athena

to give the status of the detector at any particular time.

The alignment constants are stored in a conditions database which is used by the

detector description to correct the nominal positions of the sensors from the previous

database. It also holds the calibration constants, which are needed, for example, to
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convert the drift times in the TRT straws and the MDT tubes into drift radii. The

calibration constants also comprise the list of dead or noisy silicon channels.

A distributed analysis paradigm has been kept in mind during the software design as

the amount of data and the number of users is too large for a single cluster and so

are divided across the computing resources of many institutions (see Section 3.2.8 for

more details).

3.2.8. LHC Computing Grid

The LHC project has an additional element that is common for all of the main LHC

experiments. This is the LHC Computing Grid. Which is aimed at building and main-

taining a distributed data storage and analysis infrastructure for the entire LHC com-

munity.

When the LHC begins its operations it will produce roughly 15 PB of raw data annu-

ally1 which is combined with the processed data, user data, and Monte-Carlo simu-

lation. Given the large amounts of data and the fact that over 6000 scientists spread

across the globe will need access to this data, it must be ensured that access to the

data be as efficient and stable as possible. These requirements could not be satisfied

just by CERN, so an international distributed Grid infrastructure was launched.

The Grid is a hierarchical distributed computing model based on sites called “Tiers”.

For the LHC data, a primary backup will be recorded on tape at CERN which will be

the unique Tier-0 centre. After the initial processing, this data will be distributed to

a series of Tier-1 centres (11 sites worldwide) which are large computer centres with

sufficient storage and access capacity. The Tier-1 centres will make data available

to Tier-2 centers ( 140 LCG sites worldwide) within their “clouds”, each consisting

of one or several collaborating computing facilities, which can store sufficient data

and provide adequate computing power for specific analysis tasks. Transfers between

Tier-2 centers are just done within a cloud. Finally, physics analysis will be facilitated

through a users closest Tier-3 computing resources. The main goal of this model is

that the jobs should run where the requested data is, avoiding long data transmission.

1ATLAS will produce ∼ 3.2 PB/year of raw data at high luminosity considering that it will see 2×109

events/year where each event is ∼ 1.5 MB





4
CHAPTER

TRACK RECONSTRUCTION

To analyse the underlying physics processes at ATLAS complete reconstruction of the

event (collision) is required. The multiple overlaying proton-proton collisions at the

LHC produce an environment with a large number of tracks, making track recon-

struction a very challenging task. Stringent requirements on the reconstruction per-

formance are defined by the physics we desire to study.

Determination of the trajectories of the charged particles plays a vital role for the

physics that is wished to be performed. Accurate track reconstruction allows for:

• long lived charged particle momentum and origin to be reconstructed accurately

with known uncertainty,

• Identification of short lived particles from their decay products

• the identification of primary and secondary vertices which is vital in the evalua-

tion of the particles lifetimes and is of particular interest in the identification of

τ’s and B hadrons.

Precise measurements of the positions of charge particles as well a track model which

accurately describes the trajectory of charged particles within the tracking detector

45
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are required to determine the trajectory of the particles. To ensure that momentum of

the particle is measured accurately a detailed understanding of the magnetic field is

also important. Knowledge of the material located within the detector is vital to take

into account multiple scattering and potential energy losses caused by the particle

interacting with matter. Finally knowledge of the resolution of the individual detector

components is required to ensure that the trajectory estimation is unbiased.

In this chapter the model which describes the passage of a charged particle in the

magnetic field is also discussed.

4.1. ID Data Preparation

The raw ID data (“hits”) have to be pre-processed into something more tangible in

order to perform a high performance track reconstruction. This process, known as

data preparation, transforms the hits on a detector into a position in the detectors

reference frame. The steps involved in the data preparation for the ID are discussed

below.

4.1.1. Clusterisation

Neighboring pixels/strips with hits that are designated to have been produced by the

same particle within a wafer plane are grouped into clusters. This clusterisation is

performed at hardware level for the SCT and at software level for Pixels. During

the offline reconstruction the clusterisation algorithm performs the grouping of the

pixels that share at least one edge and the cluster position is corrected by charge

interpolation from the Time-over-Threshold (ToT) measurement. This software also

checks if there are ganged pixels or bad/dead strips (using information from the

conditions database) in the cluster candidate and removes them.

The position of the cluster is calculated by taking a simple centre of gravity of all the

pixels or strips in that cluster.

A correction is made to the cluster position to take into account the deflection of the

charge carriers (electrons and holes) caused by the magnetic field present (known

as Lorentz shift). Finally a position measurement uncertainty is assigned. The SCT

procedure is similar to the Pixels procedure but using the strips information. The
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precision achieved using the clusterisation technique is higher than the resolution of

a single pixel or strip.

4.1.2. Silicon Spacepoint Formation

A spacepoint (SP) is a three dimensional point created from the pixel and SCT cluster

positions. Defined in the global frame, a SP requires only a simple transformation

from the local to global frame to be created for pixels. However for the SCT SP

formation is a little more involved.

Created using information from both sides of the module measurements (see Figure

3.5) a SP is calculated to be where the two strips or two clusters overlap. As the

two sensors in an SCT module are ∼ 1 mm apart the constructed SPs depend on the

incidence angle of the track with respect to the module. A SP can also be created from

two single measurements of two different overlapping modules on the same layer or

disk. For tracks originating from collisions, the SP formation assumes that the track

comes from the ATLAS origin.

The SP are used during offline pattern recognition in ATLAS, but due to their depen-

dence on the incident angle of the track, track fitters use the SCT clusters instead of

the SP’s in the final fit.

4.1.3. TRT Drift Circle Formation

For the TRT hits, the recorded drift time needs to be converted into a drift radius.

First, the drift time is corrected by subtracting the t0 (the time offset of the straw in

the readout electronics). The value of t0 is in principle determined for each individual

straw by a calibration procedure. In the reconstruction this fitted value is read from

the conditions database. Using this corrected drift time the radius is calculated.
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4.2. Pattern Recognition

The role of pattern recognition in the ID is to assign the measurements in the tracking

detector into sets, where all measurements in a set are believed to have come from

one charged particle.

The occupancy of each of the detector channels is defined as the fraction of detector

channels with a hit. The efficiency of detector channels is defined as the probability

for a hit in a channel where the active detection area is crossed by a charged particle.

In addition the fraction of channels (in a local area) with hits caused by electronic

noise is referred to as the noise level occupancy.

A group of hits created by a single charged particle is called a track. Pattern recogni-

tion is the process of finding tracks while minimising the number of fake tracks and

eliminating wrong hits. Wrong hits are those incorrectly associated to a track. Fake

tracks are reconstructed tracks where no particle has been and mostly consist of sev-

eral hits randomly lining up. Fake tracks are very dependent on the occupancy of the

detector and are often defined as a track comprised of mainly random hits. Once the

hits have been associated to the track, an estimation of the trajectory of the original

particle is constructed in the track fitting procedure.

Each bunch crossing at the LHC, at high luminosity, will create many hundred charged

particles that pass into the Inner Detector. When the occupancy in a detector rises the

rate of fake tracks rises sharply. The detector has been designed in such a way to

ensure that high occupancy is avoided. For example the pixel detectors, which have

been chosen for the three innermost silicon layers of the ATLAS detector, endure their

occupancy is low by having each pixel small enough that the track denisty is not too

high.

The default pattern recognition for the Inner Detector in ATLAS is called New Track-

ing (NEWT)[77]. Other packages include iPatRec[78] and xKalman[79]. NEWT is

based upon using a combinatorial Kalman Filter technique and is designed to identify

tracks with momentum > 0.5 GeV in the SCT and pixel (“silicon portion”) of the ID.

Seeding tracks with hits from the silicon portion of the ID, NEWT solves the possible

ambiguities, and provides estimates of the track parameters. The silicon portions are

then matched to TRT track segments. After extrapolation to the TRT, the track fitting

algorithm uses all compatible measurements and estimates the trajectory of the parti-

cle that created the track. In addition to the silicon seeded tracking of the NEWT there
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is complementary TRT seeded algorithm that starts from the unused TRT segments

and fits “outside in”.

4.3. Track Model

For track fitting, the track model needs to describe the motion of a charged particle

in a static magnetic field B ( x⃗). This model needs to be accurate and easily linearised

to allowed for the trajectory to be well estimated. The force exerted on the particle is

given by

F=
d p⃗

d t
∼ qv× B( x⃗), (4.1)

where p⃗ denotes a three-dimensional momentum vector, x⃗ denotes a three-dimensional

position vector, v= d x⃗/d t is the velocity of the particle and q is the charge of the par-

ticle[80]. Since F.v = 0 the magnetic force does no work on the particle and hence

|p⃗|= p = constant.

It is useful to rewrite Equation 4.1 in terms of the path-length, s(t)

ds

d t
= v,

v = vα̂, α̂ ≡
d x⃗

ds
,

p⃗ = γmv, (4.2)

d p⃗

ds
= κqp̂×B( x⃗),

dα̂

ds
=

α̂× B̂

ρ
, ρ = p/κqB,

where the κ is a constant of proportionality, which is proportional to the speed of

light. The value of κ = 0.299792458 GeV/cT−1m−1 where the strength of B is

expressed in tesla, momentum is given in GeV/c, distances in meters and charge in

units of elementary charge. Unit vectors are indicated by theˆsymbol. This equation

of motion indicates that the motion of the particle will be circular with radius ρ about

the direction of the magnetic field.
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If it is assumed that the magnetic field is uniform and orientated parallel to the z-axis:

B= (0, 0, B). Equation 4.2 reduces to

dαx

ds
=

αy

ρ
dαy

ds
= −

αx

ρ
(4.3)

dαz

ds
= 0.

By differentiating Equation 4.3 again we decouple the x and y components.

d2αx

ds2
=

1

ρ

dαy

ds
= −

αx

ρ2

d2αy

ds2
=

1

ρ

dαx

ds
=
αy

ρ2
(4.4)

d2αz

ds2
= 0.

The solutions to this set of differential equations are sinusoidal in the x and y com-

ponents

αx = αx0 cosφ −αy0 sinφ

αy = αx0 sinφ +αy0 cosφ (4.5)

αz = αz0,

where φ = s/ρ. φ can physically be interpreted as the angle which the momentum

vector is rotated, perpendicular to the magnetic field B, when the particle moves

a distance s. Obtaining the position of the particle in the field is found simply by

integrating Equation 4.5. Given that at s = 0 we are located at some reference point

x⃗0 = (x0, y0, z0)

x(φ) = x0+ αx0ρ sinφ −αy0ρ
#

1− cosφ
$

y(φ) = y0+αy0ρ sinφ +αx0ρ
#

1− cosφ
$

(4.6)

z(φ) = z0+αz0ρφ.

It should be remembered that α̂ is just the unit vector of the momentum vector i.e.

p⃗ = γmvα̂ and the radius of curvature ρ = p/κqB. In an effort to simplify the system
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of equations they can be rewritten

px = px0 cosφ − py0 sinφ

py = px0 sinφ + py0 cosφ

pz = pz0

x = x0+
px0

a
sinφ −

py0

a

#

1− cosφ
$

y = y0 +
py0

a
sinφ +

px0

a

#

1− cosφ
$

(4.7)

z = z0+
pz0

a
φ,

where a = κqB. Although these solutions are for the relatively unrealistic case of a

perfectly homogenous field they are still useful. For example, if we follow a particle

through an inhomogeneous field with a series of small steps, treating the field in each

step as if it was homogenous we can apply the exact solutions to our equations of

motion.

4.3.1. Track Parameters for a Helical Model

The solution to Equation 4.4 gives six constants of integration

p= (x0, y0, z0, px0, py0, pz0). (4.8)

Using the identity

)
d x

ds

*2

+

)
d y

ds

*2

+

)
dz

ds

*2

= 1, (4.9)

it is possible to remove one degree of freedom leaving only five free parameters.

These remaining parameters are a representation of the five free track parameters,

two coordinates describing the impact position on a given surface, two describing

the direction at that point and the radius of curvature (or transverse alternatively

momentum)(see Figure 4.1).

The choice of parameterisation for the track parameters is arbitrary however it is gov-

erned by two factors: the underlying track model; and the geometry of the detector.
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Figure 4.1.: A graphical representation of the helix parameters in the transverse plane (left)

and the longitudinal plane(right)

If we assume that our detector geometry is cylindrical then it is practicable to write

the track parameters in terms of the five parameters

p= (d0, z0,ϕ0,θ , h.RH). (4.10)

The signed impact parameter, d0, is the radius of point of closest approach to the

origin in the x -y plane, and is positive when the ϕ of the position is greater than that

of the direction of motion at the point of closest approach. z0 is the z of the track at

the point of closest approach to the origin in the x -y plane. The angle ϕ0 is the ϕ of

the track momentum at the point of closest approach. θ is the polar angle between

the positive z axis and the particles direction. The direction of rotation for the helix

in the transverse plane, h, is given by h=−sign(qBz) = sign(dϕ/ds) =±1.

For completeness some useful relationships between the parameters

ϕ0 = tan−1 (py0/px0) pT =
0

p2
x + p2

y

θ = tan−1(pT/pz) px = pT cosϕ0

py = pT sinϕ0 |d0|=
,

x2
0 + y2

0

x0 =−d0 sinϕ0 y0 = d0 cosϕ0

z0 = z0 RH = pT/(|κqB|). (4.11)
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Additionally the change in the direction of the charged particle

sin(ϕ −ϕ0) =
d0

r
+

RH/2r(r2 + d2
0 )

1+ 2RHd0

(4.12)

cos(ϕ −ϕ0) = ±

1

1− d2
0/r

2[(1+ RHd0/2)
2 − r2R2

H/4]

1+ RHd0

. (4.13)

4.3.2. Track Parameters for a Linearised Helical Model

It is useful, for fitting purfoses, to have a track model that is approximately linear.

If we consider the case of a high momentum particle where the deflection by the

magnetic field (∆ϕ) is small and the tracks begin near the origin of the coordinate

system then:

ϕ = ϕ0 +∆ϕ, (4.14)

and since dr/ds if effectively constant there is no deflection in the longitudinal plane:

θ = constant.

When ∆ϕ and d0 are small then

ϕ−ϕ0 ∝
q

pT

r.

In this case, the track model is approximately linear in the parameters (ϕ0, cot(θ ), q/pT ).

The track parameters based on a linearised helical model in cylindrical coordinates

are

p=
#

rϕ, z,ϕ0, cot(θ ), q/pT

$

. (4.15)

The radius of curvature can be used instead of pT if desired.
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4.3.3. Parabolic representation of Track Model

At high momentum a parabola can approximate the helix in the bending plane while

a straight line in the r − z plane[81]

rφ = −d0 +φ0r +
1

2R
r2 (4.16)

z = z0 + tan(θ ) r. (4.17)

Where R is the radius of curvature which is proportional to pT , φ0 is the direction of

the track in the x -y plane at the point of closest approach, d0 is the impact parameter

defined as the distance of closest approach to the beam line, z0 is the value of z at the

point on the track where d0 is evaluated and θ is the dip angle.

4.3.4. Track Parameters for the ATLAS Tracking Detectors

The track parameters of the linearised helical model are not appropriate for the ATLAS

tracking systems for a number of reasons:

• The magnetic field is not uniform throughout the tracking volume. Therefore pT

is not a constant of the motion hence the more appropriate choice of q/p.

• The layout detector and the geometry of individual sensors are not cylindrical so

rφ is no longer a well linearised term.

• Corrections for energy loss are calculated as a function p, not pT . Corrections

are also applied directly to p. It is undesirable to continuously switch between

representation, as it is computationally expensive and may lead to numerical

inaccuracies.

• Multiple scattering is most naturally corrected using (φ,θ ) and also requires

knowledge of the current momentum. Again, the undesirable nature of switch-

ing between representations arises.

To try and accommodate these factors, the chosen parameter set in ATLAS is[82]

xAT LAS = (loc1, loc2,φ,θ , q/p), (4.18)
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where the impact point of the track on a surface is given in local coordinates by

(loc1, loc2).

4.4. Estimation Theory

Estimation Theory (ET) deals with the basic problem of inferring some relevant fea-

tures of an experiment based on observation of the experiment outcomes. Track fitting

is an implementation of estimation theory. The relevant feature we are interested in

is the state vector, p, which describes the trajectory of a particle i.e. the helix param-

eters. Assuming that we have an accurate track model, f, we are able to determine

the path of the track as a function of the track parameters p. This is in contrast to

experimental observations, which are normally the result of recording the position

of charged particles passing through sensitive detectors. These measurements of the

track, m, are a function of the true state vector degraded by experimental limita-

tions (e.g. noise). The experimental limitations are described by a vector of random

variables, ϵ. Hence

m = f(pt rue) + ϵ. (4.19)

The task of ET and track fitting is to find a meaningful mapping, F, of the set of

measured coordinates, {m}, onto the set of track parameters, {p}, with minimum

variance and without bias for the fitted parameters:

p̃ = F(m), (4.20)

〈p̃〉 = pt rue, (4.21)

σ2(p̃i) ≡ 〈(p̃i − (pt rue)i)
2〉 → Minimum, (4.22)

where p̃ and pt rue and the fitted and trues values of p respectively. For each individual

track the true value of the track parameters, pt rue, is an unknown but fixed value,

while the value of p̃ is a function of random quantity m and is hence a random

quantity also. The variance is to be considered as the experimental error on our

measured quantities and may vary dependent on pt rue. If our measurements m were

not random variables then calculating F would be an inversion problem, i.e. F = f−1,

and not an estimation problem at all.
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The conditional probability density function d describing the detector measurement

resolution can be constructed using the definition of the track model and the ran-

domly displaced measurements. The conditional probability density function is domi-

nated by the difference between the measurement vector and the appropriate quanti-

ties of the track f(p), i.e. ε=m− f(p). This value often depends on the measurement

vector itself.

d(m;pt rue) = d ′(ε,m) = d ′(m− f(p),m) (4.23)

d(m;p) ≥ 0 (4.24)
∫ ∞

−∞
d(m;p).dm = 1 (4.25)

Explicit estimators are defined by a function of the measurement vector, and implicit

estimators determine quantities that can only be implicitly defined by the measure-

ment vector.

4.4.1. Cramér-Rao Lower Bound (CRLB)

In its simplest form, the CRLB expresses the lower bound on the variance of estimators

of a deterministic parameter, i.e. the best parameter resolution we could hope to

obtain using our detector. Although this lower bound may be impossible to achieve it

does serve a purpose in evaluating the overall efficiency of our estimator.

The CRLB states that, in the multivariate case

σ2(p̃i) ≥ (I−1)ii, (4.26)

where I is the Fisher information for our system it is defined as

(I(pt rue))i j =

3

∂ ln d(m;p)

∂ pi

×
∂ ln d(m;p)

∂ pj

4

. (4.27)

4.4.2. Maximum Likelihood Estimator (MLE)

The MLE is one of the most common implicit estimators. It has the very favourable

properties of being asymptotically unbiased, asymptotically efficient (i.e. achieves the
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CRLB), and having a Gaussian probability distribution function. The idea is to choose

a set of parameters p which maximises the likelihood of the model having generated

the data. This is achieved by inspecting the Likelihood ratio R

Rm(p) = d(m;p)/d(m;p0). (4.28)

To estimate the value of p it is required that the likelihood ratio be a maximum, or

equivalently, that the natural log of the ratio be a maximum.

∂ ln Rm(p)

∂ p
= 0 (4.29)

If an efficient estimator exists (i.e. satisfies the CRLB), the maximum likelihood pro-

cedure will produce it. Track fitting with a MLE is often rather impractical due to the

computation time required.

4.4.3. Gauss-Markov theorem

The Gauss-Markov theorem states that for a linear model, e.g. a linearised track

model,

p= Hθ+ ε, (4.30)

where θ is a vector of parameters to be estimated, ε is a noise vector which is unbiased

( 〈ε〉 = 0) and has covariance C. The least squares method will then produce an

unbiased estimate for θ and amongst a class of unbiased linear estimators it will

produce the result with smallest variance (i.e. the best possible result).

4.5. Track fitting with the Least Squares Method (LSM)

The LSM has a long history of being used for the purpose of track fitting particle

physics experiments. It is numerically simple, has convenient statistical properties

and is relatively fast.

The track model, which is the solution of the equations of motion for a charged par-

ticle in magnetic filed, is required to be linearised to be used in the LSM. As such the
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function f(p) is expanded around the point p0

f(p) = f(p0) +A · (p− p0) + - ((p− p0)
2), (4.31)

where f is an (n×1) vector of observations, A is a (n×k) matrix of known coefficients

and is defined by

A =
∂ f(p)

∂ p
at p= p0. (4.32)

The range in which this linearised model actually stays closely related to the full

model depends strongly on the choice of track parameterisation (see Section 4.3 ).

If the track model can be well approximated by a linear model in the neighborhood

of the measurements and errors vary little with track parameters ( so they can be

considered constant in the region of the track path), the LSM has minimum variance

among the class of linear and unbiased estimates (see Section 4.5.1). In addition

to the linearised track model (Equation 4.31), another key component, called the

covariance matrix (V), must be calculated

V= 〈(m− 〈m〉)(m− 〈m〉)T 〉, (4.33)

where m is the measurement vector defined in Equation 4.19. The weight matrix is

defined as the inverse of the covariance matrix:

W ≡ V−1. (4.34)

At this stage it would be pertinent to say it is expected that m has been corrected for

possible biases i.e.〈m〉= f(pt rue). In the case of totally independent measurements the

weight matrix is diagonal and of the form Wii = 1/σ2
i . This is certainly not the usual

case. In general the weight matrix will have off diagonal terms and matrix inversion

is required to obtain it.

The LSM tries to minimise M which is the weighted scalar sum of the squares of the

measurement residuals. In matrix notation this can be written as:

M = rT ·W · r, (4.35)
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where the residual r is the difference between the measurement and the linear model

predication

r = f(p)−m (4.36)

= f(p0) +A · (p− p0)−m. (4.37)

The effect of the weight of the matrix is to give higher or lower emphasis to certain

measurements, for example if some data is deemed to be more reliable.

In order to minimise M with respect to our track parameters p we differentiate M

with respect to p and take advantage of the matrix property ∂ θT Aθ/∂ θ = 2Aθ

∂M

∂ p
= 2AT W(f(p0) +A · (p− p0)−m). (4.38)

Setting ∂M/∂ p= 0 we obtain a solution to our track parameters

∂M

∂ p
= 0 = 2AT W(f(p0) +A · (p− p0)−m)

AT WA · (p− p0) = AT W · (m− f(p0))

p̃ = p0+ (A
T WA)−1A

T
W · (m− f(p0)) (4.39)

= p0− (AT WA)−1A
T
W · r(p0). (4.40)

If the derivative of A is dependent on p, the problem would be non-linear. In this

case p̃ would not be the value of p that minimizes M , but would be closer than

p0. To obtain a better solution the values of the derivative should be updated by

substituting p0 = p̃ into Equation 4.40. In doing so a new estimate of the value p̃

would be obtained. This procedure is repeated until the solution has converged,

which is usually defined by a minimum change in M .

An understanding of the measurement uncertainty, hence detector resolution, is very

important for the correct estimation of track parameters and must be checked during

data acquisition and offline analysis. Although not detailed here it should be noted

that it can estimated through:

• Theoretical consideration

• Measurements from a calibration experiment ( e.g. test beam )

• The tracks themselves
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4.5.1. Properties of LSM

There are a number of key properties of the LSM which make it suitable for track

fitting. Firstly, it is an unbaised estimator. From Equation 4.40

〈p̃〉 = 〈p0− (AT WA)−1A
T
W · (m− f(p0))〉

= 〈p0− (AT WA)−1A
T
W · (f(ptrue) + ϵ− f(p0))〉.

In the case where we have a linear model for our measurements

= 〈p0− (AT WA)−1A
T
W · (A(ptrue − p0) + ϵ〉

= 〈pt rue〉 − 〈(AT WA)−1A
T
W · (ϵ)〉

= 〈pt rue〉 − (AT WA)−1A
T
W · 〈(ϵ)〉.

Using the fact that our measurements are unbiased i.e 〈ϵ〉 = 0

〈p̃〉 = pt rue. (4.41)

The covariance matrix of our newly found track parameters, C, is

C = 〈(p̃− 〈p〉)(p̃− 〈p〉)T 〉 (4.42)

= 〈[(AT WA)−1(AT Wr(p0))][(A
T WA)−1(AT Wr(p0))]

T 〉

= (AT WA)−1AT W〈r(p0)r(p0)
T 〉WA(AT WA)−1

= (AT WA)−1(AT WW−1WA)(AT WA)−1

= (AT WA)−1(AT WA)(AT WA)−1

= (AT WA)−1. (4.43)

If we truely have a linear model then we can rewrite our N ×1 vector of observations

(Equation 4.19) as

m = Ap+ ϵ, (4.44)

where the N × m matrix A is the observation matrix, p is a m × 1 vector of the

parameters we wish to estimate, and ϵ is the noise vector with a covariance matrix

V and 〈ϵ〉 = 0. If it is assumed that the probability distribution function of m is
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Gaussian, and given by

d(m;p) =
1

det1/2(V)(2π)N/2
exp

5

−
1

2
(m−Ap)T V−1(m−Ap)

6

, (4.45)

the CRLB can be found for this specific case.

∂ ln d(m;p)

∂ p
= (AT V−1A)((AT V−1A)−1A

T
V−1m− p) (4.46)

= (AT V−1A)(p̂− p). (4.47)

So p̂ is a minimum variance unbiased estimator, where the minimum variance is given

by the diagonal elements of the covariance matrix

C = (AT V−1A)−1. (4.48)

To find the maximum likelihood estimator we need to maximise d(m;p), or equiva-

lently minimise:

(m−Ap)T V−1(m−Ap), (4.49)

which leads to

p̂= (AT V−1A)−1A
T
V−1m, (4.50)

which has been shown to be the minimum variance unbiased estimator (Equation

4.46) and is also the least squares estimator. Showing that since an efficient estimator

exists, i.e. satisfies the CRLB, the maximum likelihood procedure produces it. If the

errors, ϵ, were not Gaussian, p̂ would not be minimum variance unbiased estimator.

However it would still be best linear unbiased estimator.

It can be explicitly shown that LSM is the estimator with minimum variance among

all unbiased linear estimators, as has been shown in Plackett[83] who notes that the

fundamental results are due to Gauss[84].

Another important property for any estimator is to be relatively insensitive to mea-

surements that deviate from the expected behavior, i.e. robust. There are two options

for measurements that significantly deviate from the expected behavior, they can be

removed, or they left as long as they do not unduly influence the estimate. These
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measurements can occur from process noise signal wrongly associated to the track in

pattern recognition, or just be a measurement with very low probability of occurrence,

referred to as outliers. Identification of such measurements is detailed in Section 4.6.

4.6. Goodness of Fit tests

As stated before three things are required to get a good estimate of the track param-

eters

• The track model must be correct.

• Covariance matrix of the measurements must be correct.

• The estimation method must work.

To ensure that this is the case a couple tests can be constructed from the results of the

LSM.

4.6.1. Pull Quantities

The pull quantities or reduced residuals are a check of the proper use of the LSM. It is

the difference between the measurement ( or true value ) m and the track hypothesis

at that surface f(p̃) = c̃ (or estimated track parameters)

pi =
mi − c̃i
,

Cii

, (4.51)

where Cii is the i th diagonal element of the covariance matrix of the residual mea-

surement.

The pull quantities should have a distribution with a mean of 0 and variance of 1, and

are sensitive to wrong error assumptions and possible misalignments of the detector.

If constantly monitored the pull quantities are able to determine if particular parts of

the detectors performance are beginning to deteriorate.
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4.6.2. χ2

A less sensitive but more global check is to observe the 〈χ2〉. The χ2 is a value that is

automatically obtained from the LSM and is actually the value which we are trying to

be minimise. The χ2 is defined as

χ2 =

n∑

i=1

)
mi − f (pi)

σi

*2

, (4.52)

or in vector notation

χ2 = rT ·W · r. (4.53)

To see why this value is important, consider a case where the deviation of the mea-

surement from its true value is gaussian. Here the probability of making a certain

observation is given by:

p(x) =
1

σ
*

2π
exp

8

−1/2

)
yi − f (xi)

σi

*2
9

, (4.54)

where the yi is the observation and f (xi) is the expectation value. The total proba-

bility of obtaining a set of n measurements , {yi, xi}, is given by the product of the

probability

p{yi ,xi} =
∏

n

P(xi)

=
∏

n

5
1

σ
*

2π

6

· exp

⎡

⎣−1/2
n∑

i=1

)
mi − f (xi)

σi

*2
⎤

⎦. (4.55)

An understanding of the usefulness of the χ2 can be obtained from Equation 4.55.

As can be seen, maximising the probability is the same as minimising the sum in the

exponential, which in turn is the definition of the χ2.

The probability distribution function (PDF) of the χ2 distribution is given by

pχ2(x) =
(1/2)n/2

Γ(n/2)
x n/2−1e−x/2, (4.56)
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where n is the number of degrees of freedom of the system and x is the χ2. The PDF

of the χ2 distribution can be shown via central limit theorem, to tend to a Gaussian

with µ = n and σ =
*

2n as n → ∞. This property can be exploited to observe the

effects of having a limited number of observations via the use of the reduced χ2.

The reduced χ2 is defined as

χ2
Reduced = χ

2/nDOF , (4.57)

where nDOF is the number of degrees of freedom and is defined by

nDOF = number of measurements+ number of constraints

− number of free parameters. (4.58)

The reduced χ2 measures both the deviations between the data, and the mean of the

parent distribution. These deviations occur because there are less than an infinite

number of observations, and there is a discrepancy between the mean of the parent

distribution and the mean as predicted by the model f .

The cumulative distribution function (CDF) of the χ2 of the distribution is given by

Pχ2(x) =

∫ x

−∞
pχ2(x) =

γ(k/2, x/2)

Γ(n/2)
. (4.59)

As such the probability of a fit being correct can be calculated and track quality se-

lection criteria can be made. It is useful under reasonable assumptions, as easily

calculated quantities can be proven to have distributions that approximate to the χ2

distribution if the null hypothesis is true.

Outlier removal

It has been assumed that all measurements in our set m have been produced by the

same particle. However this might not always be the case, for example if a small

fraction of coordinates have been associated incorrectly, or the measurements have

been associated together although there was no track at all. If we have the null

hypothesis, p0, which assumes all measurements do indeed belong to the track and
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Figure 4.2.: The χ2 probability distribution function and cumulative distribution function

with n= 1,2,4,6,8,12

compare to an alternative hypothesis, p1, we may be able to ascertain if the hits in

the null hypothese are correctly assigned.

4.7. Recursive track fitting

The estimator described in Section 4.5 is a global fitter; it requires knowledge of all

the measurements prior to the commencement of the calculation of the solution. In

the general case of n measurements the LSE computes the inverse of a n× n matrix.

Due to the effects of the multiple scattering, this matrix will not be diagonal and as

a result the CPU time for this calculation grows ∝ n3. A recursive track fitter incorpo-

rates measurements into the estimate of the track parameters in a stepwise manner,

avoiding the need for the inversion of large matrices. The recursive least squares

estimator is called the Kalman filter (KF)[85,86].

The KF is generally a method of estimating the states of dynamic systems, where

the dynamic system, is an evolving model of the time varying phenomenon. The

concept of time in this case should be interpreted as a univariate parameter to which

the system state is dependent. In the case of track fitting the univariate parameter

is the path length. At a point in space, sk, let us assume that the track intersects a

measurement surface. The trajectory between two adjacent measurement surfaces,

k− 1 and k, is given by the system equation

p(sk)≡ pk = fk(pk−1) +wk, (4.60)
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where the function fk is the track model between the surface k−1 and k. The random

disturbances which may arise due to multiple scattering and energy loss mechanisms

between the two measurement surfaces, are taken into account by the vector of ran-

dom variables wk. Any bias introduced can be corrected for, and without loss of

generality it can be stated that

〈wk〉 = 0, cov(wk)≡ Qk. (4.61)

Generally the track model fk will be nonlinear and as such will need to be approxi-

mated by a linear function. This is done a by a Taylor series expansion to first order

(See Equation 4.31). In the case of a linear track model, Equation 4.60 can be rewrit-

ten as

pk = Akpk−1+wk. (4.62)

The constant term from the linear expansion has been suppressed for convenience.

The covariance matrix for the track model at surface k is represented by the matrix

Ck.

It is worth restating that the track state is generally not observed directly, and the

relationship between the track parameters and the measurement is described by the

measurement Equation 4.63

mk = hk(pk) + ϵk (4.63)

〈ϵk〉 = 0, cov(ϵk) ≡ Vk, (4.64)

where mk is the measurement vector at surface k and ϵk is the measurement noise.

The properties of measurement vector see that it is unbiased, with a well defined

covariance matrix. It is clear that the purpose of the function hk is to map pk on to

mk. As in ATLAS this is a linear mapping, and as such can be represented by the

derivative matrix Hk. Again the constant term has been suppressed for the sake of

convenience.
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4.7.1. Kalman Filter Operations

The KF invokes three types of operation; prediction, filtering and smoothing. The pre-

diction operation provides an estimate of a future state, filtering provides an estimate

of the current state and includes the current measurement, and smoothing provides

an estimate of the previous state.

The Prediction

The prediction is the estimate of the state vector at the point of the next measurement.

Starting from an estimate of the state vector at measurement surface k − 1 which is

based upon all previous measurements m1, ..., mk−1, we wish to predict the state at

the next surface

pk|k−1 = Akpk−1+wk. (4.65)

In addtion to the state vector, the covariance matrix of the state must also be extrap-

olated from sk−1 to sk. This is given by linear error propagation

Ck|k−1 = AkCk−1A
T
k +Qk. (4.66)

The residual of the prediction is given by

rk|k−1 =mk −Hkpk|k−1, (4.67)

and the covariance matrix of the predicteion residuals

Rk|k−1 = Vk+HkCk|k−1H
T
k . (4.68)

Filtering

Once the predicted state has been extrapolated to the next surface, xk|k−1, it is com-

bined with measurement mk:

pk|k = pk|k−1+Kk

!

mk −Hkpk|k−1

"

, (4.69)
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Figure 4.3.: A schematic representation of the Kaman filter process. The track is represented

by the green line while uncertainty of the track is represented by shaded green

area.

where Kk is the Kalman gain matrix:

Kk = Ck|k−1H
T
k

!

Vk +HkCk|k−1H
T
k

"−1
. (4.70)

The filtered covariance matrix is given by

Ck|k =
#

I−KkHk

$

Ck|k−1, (4.71)

where I is the identity matrix. The residual of the filtered state is given by

rk|k =mk −Hkpk|k =
#

I−HkKk

$

rk|k−1, (4.72)

and the covariance matrix of the filtered residuals

Rk = Vk+HkCkH
T
k
. (4.73)

A schematic representation of the Kaman filter process can been seen in Figure 4.3.

Smoothing

After all measurement information have been incorporated into the filter the opti-

mal track parameters (pn|n) have been determined at the surface with the last mea-
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surement that was included (mn). It is also possible to calculate the optimal de-

scription of the trajectory on all other surfaces (pk|n). The is accomplished in the

smoothing process by incorporating information from both the filter running in the

forwards direction, (m1, m2, ..., mn), and a second filter running in the opposite direc-

tion, (mn, mn−1, ..., m1). This allows the trajectory description on all surfaces to utilise

the information of all measurements.

From the forward filtered state (pk|k), and the difference between the next forward

prediction (pk+1|k) and next smoothed state (pk+1|n), the smoothed state at surface k

can be determined

pk|n = pk|k+ Sk

!

pk+1|n− pk+1|k

"

, (4.74)

where Sk is the smoother gain matrix

Sk = Ck|kF
T
k+1

!

Ck+1|k

"−1
. (4.75)

The covariance matrix of the smoothed state (Ck|n) is

Ck|n = Ck|k+ Sk

!

Ck+1|n−Ck+1|k

"

ST
k . (4.76)

The residual of the smoothed state is given by

rk|n = rk −Hk(pk|n− pk) =mk −Hkpk|n, (4.77)

and the covariance matrix of the smoothed residuals

Rk|n = Vk+HkCk|nH
T
k . (4.78)

4.7.2. Kalman Filter Goodness of Fit

As the KF is a recursive MSE it would be expected that a χ2 for the fit could be

calculated. This can be simply done by summing each χ2 increment, χ2
k
, for each

smoothed state

χ2 =
∑

χ2
k|n = rT

k|nR
−1
k|nrk|n. (4.79)
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4.7.3. Gaussian Sum Filter

The Gaussian Sum Filter (GSF) [87–89] is a non linear generalisation of the KF. The

GSF approximates non Gaussian noise by a weighted sum of Gaussians allowing it to

take into account non Gaussian contributions. The GSF is implemented as a series of

KF’s running in parallel, where each KF acts as one of the components of the Gaussian

sum. The weights of each component are computed independently. As with the KF,

the GSF alternates propagation and filtering steps. At each stage the track parameters

are allowed to be described as a mixture of Gaussians.

Three possible applications of the GSF have been identified, to take into account:

• Tails in measurement error distributions.

• Tails in multiple scattering distributions.

• Electron bremsstrahlung, which is described by the Bethe-Heitler distribution.

Only small gains in performance can be expected by modelling multiple scattering and

measurement error distributions as Gaussian mixtures. For the strongly non-Gaussian

process of radiative energy loss the most significant improvements are predicted and

observed. Within ATLAS a version of the GSF has been developed which utilises a

Gaussian-sum approximation of the Bethe-Heitler distribution to model radiative en-

ergy loss of electrons with ATLAS[90] (see Figure 4.4). At each material surface, the

track parameters (described by a sum of Gaussians ) are convolved with a Gaussian

mixture describing the potential energy losses. This leads to an exponential explosion

in the number of components describing the track parameters. In order to limit the

number of components, hence the computation time, the components that are suffi-

ciently similar to each other are merged together. A detailed explanation of the GSF

in ATLAS can be found in[90]
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Figure 4.4.: A simplified illustration of a typical extrapolation process within a GSF filter step.

The track, on the detector module 1, is propagated onto the next measurement

surface, which requires the track to pass through a material layer. The material

layer between the two modules causes an increase of the track direction uncer-

tainties. These uncertainties model by a weight sum of Gaussian (in this case 2

Gaussians). This now means that track parameters are represented by a weight

sum of Gaussians which are propagated to the measurement surface and updated

in manner identical to that of the Kalman filter.





5
CHAPTER

ALIGNMENT OF DETECTORS WITH TRACKS

To make use of the high spatial resolution of the Inner Detector, (in particular the

Pixel and SCT detectors), the knowledge of the location of modules must better the

spatial resolution in terms of precision. The alignment of the detector is the process

of determining the position of the active detector modules within a global reference

frame. These positions are then taken into account during the tracking and event

reconstruction.

Track based alignment techniques all rely on the minimisation of residual distribu-

tions, where residual is defined as the distance between between a track and its hit

on a module surface. At present a number of independent alignment approaches have

been developed for the Inner Detector of ATLAS.

One such method is known as the Global χ2 Alignment. This chapter presents the

details of this method. In section 5.1 the details of how to extract the alignment

parameters from the results of multiple track fits is presented. Section 5.2 intro-

duces two ways of incorporating the effects of multiple scattering into the track and

alignment parameter fit. Section 5.3 details how to align a structures comprised of

multiple detector modules. Section 5.4 provides a detailed example of how to calcu-

late the derivative of the alignment parameters with respect to the track parameters

73
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and residuals. The final portion of the chapter focusses on obtaining reliable solutions

from the large system of linear equations produced by the alignment procedure.

There are two other alignment methods implemented in ATLAS:

• The Robust Alignment [91,92] is an iterative method aimed at aligning any

kind of silicon detector by re-centring residual distributions using the module

overlapping information.

In each iteration alignment corrections (given in the local module plane) are

calculated from the measurements of mean residual R̄i and mean φ(z) overlap

residuals ŌR
φ

i
(ŌR

z

i
), where i stands for either x ′ or y ′ (the local axes of the mod-

ule). The method aims at correcting the inplane DoF only as it is not sensitive to

movements perpendicular to the surface of the module.

This method has been tested and successfully applied to the simulation chal-

lenges[3,93], testbeams[94] and cosmic ray data taking[95,96]. Although it is

not as powerful as the Local χ2 or Global χ2 techniques it provides invaluable

information for cross-checking results obtained from the other two techniques.

• Local χ2 Alignment[97,98] is based on the minimisation of the χ2 with respect

to the alignment parameters. The χ2 is defined as

χ2 =
∑

Tracks

rT V−1r.

Where r is the vector of residuals to the fitted track and V is its covariance matrix.

The residuals will depend on the track parameters (p) as well as the alignment

parameters related to the modules intersected by that track (α).

It is assumed that the corrections are small and as such the problem can be

lineriased for which the generic solution for alignment corrections is

δα=

?
∑

Tracks

)
dr

dα

*T

V−1
dr

dα

@−1
∑

Tracks

)
dr

dα

*T

V−1r. (5.1)

The track parameters dependence on the alignment parameter corrections is

neglected in this method hence dr/dα = ∂ r/∂α. This assumption makes that

the covariance matrix diagonal as a resulting system of equations breaks down

to 6× 6 blocks.
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These approximations made are justifiable as long as uncertainty on the track

parameters is smaller than that of the measurements. As all correlations between

modules are ignored the method is inherently iterative and as such needs a large

number of iteration to converge.

The Local χ2 method has been tested on CTB[94] and cosmic ray data[95,96]

in addition the simulation challenges[3,93].

5.1. Global χ2 Alignment

The Global χ2 Alignment algorithm is quite similar in principal to the Millepede[99]

alignment procedure. Developed for the H1 [100] at HERA , Millepede has been

shown to work well and has been adopted by a number of other high energy physics

experiments [101–103]. The basic principal of this algorithm is to minimise a χ2 with

respect to all of the alignment parameters simultaneously.

In Section 4.5 the method of track fitting using the LSM was described. The procedure

minimises the χ2 (Equation 4.52) with respect to all track parameters and coordinates

measurements simultaneously producing an unbiased estimate of the track parame-

ters. In reality, the measurement residual (Equation 4.36 ) r is not only dependent

upon the track parameters p but also upon the alignment parameters α which are

the same for all tracks. In this section a procedure of how to extract the alignment

parameters from a large sample of tracks is described. This is followed by a discussion

of the properties of the alignment problem.

5.1.1. Alignment Details

As mentioned previously, the track residuals are dependent on p and α. There is

an ambiguity as to whether the alignment parameters are seen as part of the track

model f or should be used to correct the position the measurements themselves. This

detail is rather inconsequential in the development of the formalism as it is suffice to

say that the residuals are dependent on track parameters, alignment parameters and

measurements.

r(p,α,m) = f(p,α)−m or f(p)−m(α) (5.2)
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In order to determine the alignment parameters we define a metric that is sensitive to

changes of the alignment parameters and minimise this with respect to the alignment

parameters. Our chosen metric is the χ2:

χ2 =
∑

Tracks

rT V−1r. (5.3)

Upon first inspection it may seem possible to minimise Equation 5.3 using the proce-

dure outlined in the previous section to obtain the alignment parameters. This naive

observation negates the effect of the nested track parameters. If the procedure used to

find the track parameters (Section 4.5) is followed, replacing p with a vector contain-

ing both the alignment parameters and the track parameters, the technique quickly

becomes impractical. Assume that N alignment parameters are wished to be found.

Each time a track is added the N ×N matrix will increase in size to (N + n)× (N + n)

where n is the number of parameters in the track fit. As we will need a significant

number of tracks to reduce the statistical error on the alignment parameters, the ma-

trix size could be very large. For example, if using 100000 tracks, the matrix size

would be (N + n× 100000)× (N + n× 100000). A matrix of this size is impractical

to solve without using specialised computing systems.

In order to avoid this problem it is possible to find a solution for α without explicitly

solving the large set of track parameters at the same time. To do this the fact that

the track parameters are not common to all of the tracks while the alignment param-

eters are is utilised. An initial solution for the track parameters for any arbitrary track

fit is found, and its derivative used to predict how the track parameters change as

a function of the alignment parameters. This can be done in two equivalent ways,

by using an alternative definition of the full derivative when minimising the χ2 [55]

(see also Appendix B) or by explicitly finding the solution for the track parameters

and inserting them into the χ2 derivative for the alignment parameters (as done in

[104]).

Following the derivation of[104] we start by taking the full derivative of the χ2 with

respect to the alignment parameters

dχ2

dα
= 2

∑

Tracks

drT

dα
W · r, (5.4)
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where the weight matrix W= V−1.

If the measurements are independent, the matrix W will be diagonal and hence the

derivative to any alignment parameter αi will only receive contributions from the

residuals where ∂ r/∂ αi are non zero. Therefore only the measurements occurring in

the module which coincides with the alignment parameter αi will contribute to the

first derivative of the χ2.

As a first step to determining the alignment parameters, the track parameters need

to be determined for some arbitrary alignment. This is just the regular least squares

track fit as described in the previous chapter

p̃= p0− (AT WA)−1A
T
W · r(p0,α), (4.40)

where A is the partial derivative of the residual with respect to the track parameters (

∂ r/∂ p ) evaluated at some arbitrary initial value p0, W is the weight matrix (defined

by W = V−1) and the residuals r now depend on the alignment parameters. This now

provides a solution of the track parameters as a function of our alignment parameters

α which can be used in conjunction with the definition of the global χ2 (Equation

5.3) to obtain a solution for the alignment. Proceeding in an analogous way that was

used to extract the solution of the track parameters (i.e linearisation of the problem),

we can begin to solve for the alignment parameters.

dχ2

dα
= 2

?
∑

Tracks

drT

dα
W · r

@

= 2

?
∑

Tracks

drT

dα
W

)

r(p0,α0) +
dr

dα0

(α − α0)

*
@

. (5.5)

Setting dχ2/dα = 0

0 =
∑

Tracks

drT

dα
W

)

r(p0,α0) +
dr

dα0

(α − α0)

*

=

?
∑

Tracks

drT

dα
W

dr

dα0

@

(α − α0) +
∑

Tracks

drT

dα
W · r(p0,α0). (5.6)
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However, there is now a nested dependancy on the track parameters. The full deriva-

tive can be rewritten as

dr

dα
=
∂ r

∂α
+
∂ r

∂ p

dp

dα
. (5.7)

The derivative dp/dα can be obtained by differentiating Equation 4.40

dp

dα
= −

!

AT WA
"−1

AT W
∂ r

∂α
, (5.8)

hence

dr

dα
=
A

1−A
!

AT WA
"−1

AT W
B ∂ r

∂α
. (5.9)

From equations 5.6 and 5.9 the alignment corrections can be derived

α − α0 = −

?
∑

Tracks

drT

dα
W

dr

dα

@−1
∑

Tracks

drT

dα
W · r(p0,α0)

= −

?

∑

Tracks

∂ rT

∂α
Ŵ
∂ r

∂α

@−1
∑

Tracks

∂ rT

∂α
Ŵ · r(p0,α0), (5.10)

where all partial derivatives are evaluated at some initial values for the track param-

eters p0 and alignment parameters α0. Ŵ is defined by

Ŵ =
A

1−A
!

AT WA
"−1

AT W
BT

W

= W−WA
!

AT WA
"−1

AT W. (5.11)

It is useful to note the following simplifying relationship

ŴWŴ = Ŵ. (5.12)

To simplify notation, 5.10 can be re-expressed as

α − α0 =−!−1" . (5.13)

We have effectively reduced the alignment problem down to n coupled linear equa-

tions, where our solution is the inverse of a matrix! multiplied a vector " .



Alignment of detectors with Tracks 79

5.1.2. ! and "

The properties and meaning of the matrix ! and vector " are of paramount im-

portance when trying to solve our problem. It can be easily shown that!−1 is the

covariance matrix of the alignment parameters.

As is !−1 is a covariance matrix it would be hoped that ! would be symmetric

positive definite so that all eigenvalues are positive. By default this is not the case as

the alignment equations will not give the detector a fixed frame of reference meaning

that the matrix will be singular. After fixing the alignment systems frame of reference

(e.g. the position of a single module) the matrix will be symmetric positive definite

and the results will be valid.

The density of the matrix! also plays a vital role in how the problem is solved (See

Section 5.7). When aligning modules the level of correlation, and hence the density

of the matrix, will depend on the degree of overlap between modules on a single

structure and the diversity of angles that tracks pass through modules.

! is effectively the second derivative of the χ2 with respect to the alignment param-

eters, assuming that all higher order terms are ignored while " is the first derivative,

thus

α − α0 =−
-

d2χ2

dα2

.−1
dχ2

dα
. (5.14)

When stated in this manner it clear that alignment parameters are arrived via the

Newton-Raphson method to find the roots of the function dχ2/dα. This technique is

not perfect and can behave poorly near asymptotes or a local extremum. However,

with a good initial choice of the root’s position, the algorithm will converge. It can be

shown that when this method converges it converges quadratically (see Appendix C).

For the alignment of n parameters the minimum χ2 condition consists of n coupled

equations. In general, ∂ r/∂α are non linear, and consequently the equations that

make up the minimum χ2 condition are also non linear. It will be shown later that

the technique will require a number of iterations to account for these nonlinearities.

From this position is is also worth mentioning the “Local χ2 Alignment”, which searches

for a solution for the alignment parameters of individual modules without taking into

account the correlations between modules. This removes the problem of solving one



80 Alignment of detectors with Tracks

large system by solving smaller systems many times. This simplification does come

at a cost, as correlations are ignored and many iterations are necessary to account

for them. In the Local χ2 method, parameters for each module are calculated under

the assumption that all other modules do not move (i.e. perfectly aligned), and as

such requires that the multiple iterations be performed. The solution to the local χ2

alignment can be reproduced by the global method if intermodule correlations are

ignored in the matrix! .

There are a number of advantages of the global method over the local technique:

firstly since the matrix! is complete it would be expected that the alignment prob-

lem would converge in one iteration if the problem is linear. Secondly the systems

of equations, if inverted, can provide the full covariance matrix for the alignment pa-

rameters allowing for the uncertainty on the alignment parameters to be estimated.

Finally if the matrix is inverted via diagonalisation, the eigenvectors and eigenvalues

of system can be used to identify and remove poorly constrained degrees of freedom.

These poorly constrained degrees of freedom are of particular concern for alignment

and in both the local and global methods can lead to poor convergence or oscillatory

behaviour in the solution between iterations. When applied to the ATLAS Inner De-

tector the alignment problem is not perfectly linear so a number of iterations will be

required to solve the alignment problem.

5.2. Treatment of Multiple Scattering

In the normal track fitting scenario the covariance matrix (V) of the residuals is a

diagonal matrix corresponding to the measurement errors. If a material description is

available then Multiple Coloumb Scattering (MCS) effects can be incorporated in the

track model by allowing the track to kink on a finite number of scattering surfaces.

Taking MCS into account introduces correlations between the scattering planes and

therefore measurements between them. MCS is most needed to be taken into account

in high material regions of the detector or when the momentum of the particle is low.

To introduce the MCS contribution two approaches can be followed and in both cases

the residuals will also depend (explicitly or implicitly) on the scattering angles θ

hence r = r(p,θ,α). The results of both methods have been shown to be equivalent

and hence both techniques are suitable methods.
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Explicit scattering effects dependence

To introduce the scattering angles explicitly the χ2 (Equation 5.3) is redefined and an

extra term is added

χ2 = rT V−1r+ rT
θΘ
−1rθ , (5.15)

where the first term is the normal track χ2 (where the residuals (r) depend explicitly

on the scattering angles, θ), and the second term represents the contribution from

the scattering angles. In this term, rθ = (θ−θ′) represents the residual vector for the

scattering angles (θ′ is the expected value and θ the measured value). Θ = σ
θ
σT

θ
is

the covariance matrix for the MCS contribution. Θ is diagonal as the expectations for

the scattering angles are independent of each other. The elements can be calculated

according to Equation A.8 which evaluates an expectation value for the scattering

angle based upon the momentum of the track and the amount of material between

each measurement.

As σθ ∝ 1/p, multiple scattering is very important in the reconstruction of low mo-

mentum tracks. The computations of the multiple scattering covariance matrix re-

quires that there has been prior momentum determination and as such can not be

applied to tracks that have no momentum knowledge.

In this approach the covariance matrices, V and Θ, remain diagonal in the track fit

but now the χ2 has to be minimized with respect to the track parameters (p) and

scattering angles (θ), simultaneously.

By redefining terms that are included in the χ2 such that

p̃=

⎛

⎜
⎝

p

θ

⎞

⎟
⎠ , r̃(p̃,α) =

⎛

⎜
⎝

r(p,θ,α)

rθ (θ)

⎞

⎟
⎠ and Ṽ=

⎛

⎜
⎝

V 0

0 Θ

⎞

⎟
⎠ . (5.16)

The equation for the χ2 track fit including the multiple scattering simply written as

χ2 = r̃T Ṽ−1r̃ where r̃= r̃(p̃,a). (5.17)

So in effect the track is not defined just by the five parameters of its helix but also by

a sequence of scattering angles attributed to each scattering plane it traverses.
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This approach is used in the Global χ2 track fitter [105][106]. MCS effects are in-

corporated in the track model by allowing the track to kink on a finite number of

multiple scattering planes.

Implicit scattering effects dependence

This approach eliminates the scattering angles from the χ2 minimisation by directly

including their contribution in the covariance matrix and residual vector. This is the

approach used in the Global χ2 alignment algorithm. The χ2 used is the one in

Equation 5.3 however the modifications are made. The covariance matrix is modified

to take into account MCS

V→ V+VMCS where VMCS =
∂ r

∂ θ
Θ

)
∂ r

∂ θ

*T

, (5.18)

where V describes the intrinsic resolution of the measurement devices and it is diago-

nal by construction and VMCS contains the scattering effects contribution. The vector

∂ r/∂ θ are the derivatives relating the deflection angles, θ, to the change of residual

on the extrapolation to the consecutive measurement planes and Θ is, as before, a

diagonal matrix describing the expectations for the scattering angles derived from the

expression A.8.

In addition to the changes to the covariance matrix the residuals have to be redefined

to accommodate the scattered trajectory

r→ r+
∂ r

∂ θ
θ. (5.19)

As can be seen the new residuals again have a θ dependence (i.e. r = r(p,θ,α)).

As the scattering angles have not be calculated directly to use this technique a prior

knowledge of the scattering angles is needed. In ATLAS the scattering angles are

obtained from the initial track fit performed by the Global χ2 track fitter.

5.3. Alignment of Super Structures

The alignment of “super structures” constructed from multiple modules plays an im-

portant role in the alignment of the ATLAS Inner Detector. By aligning the structures
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the statistical significance of the solution is increased, allowing for systematic effects

to be studied in more detail and in a simpler manner. Using logical physical structures

as super-structures, for example layers, discs etc., allows for the alignment results to

be directly compared with survey measurements. Aligning super-structures also re-

duces the number of degrees of freedom of the system allowing for the solutions to

the system to be calculated in a timely manner. This does have the effect of increasing

the density of the matrix as reducing the number of structures that are being aligned

will increase the correlation between the structures that being aligned.

The solution to the alignment parameters given in Equation 5.10 is a general solution

to the alignment problem. To align the super-structures we can reinterpret Equation

5.10 so that we are now solving the alignment of the super structures, β,

β − β0 = −

?
∑

Tracks

)
∂ r

∂ β

*T

Ŵ

)
∂ r

∂β

*
@−1

∑

Tracks

)
∂ r

∂β

*T

Ŵ · r. (5.20)

However, hidden in Equation 5.20 there is a dependence on the individual module

alignment parameters (α) as the residuals are generally calculated in the local frame

of reference of the individual modules. Rewriting

∂ r

∂β
as

∂ r

∂α

∂α

∂ β
,

Equation 5.20 transforms to

β − β0 = −

?
∑

Tracks

)
∂ r

∂α

∂α

∂β

*T

Ŵ

)
∂ r

∂α

∂α

∂β

*
@−1

·

∑

Tracks

)
∂ r

∂α

∂α

∂β

*T

Ŵ · r (5.21)

= −

?
)
∂α

∂ β

*T ∑

Tracks

)
∂ r

∂α

*T

Ŵ

)
∂ r

∂α

*)
∂α

∂ β

*
@−1

·

)
∂α

∂ β

*T ∑

Tracks

)
∂ r

∂α

*T

Ŵ · r

= −
-)

∂α

∂ β

*T

!
)
∂α

∂β

*.−1)
∂α

∂β

*T

" . (5.22)
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The matrix ∂α/∂β is a Jacobian describing how the local alignment parameters (α)

vary with respect to that of the super structures alignment parameters (β). The solu-

tion of the super structure alignment parameter is a projection of the original problem

and can be calculated in one of two ways. Using Equation 5.21 where the alignment

parameters are calculated directly. Alternatively, one can define a matrix and vector

with respect to the individual module alignment parameters and perform the pro-

jection onto the smaller system after all tracks have been processed. In this way, it

is required to only once process the data to get many possible interpretations of the

results. Comparison of these results can gain some insight into the systemic of the

problem.

For the alignment of a super structure the residuals that are provided by the individual

modules need to be translated into the reference frame of the super structure. The

derivatives of the alignment parameters need to be determined with respect to the

super-module parameters instead of the individual modules parameters.

5.4. Alignment Derivative Calculations

A key component of the least squares fit is the calculation of the derivative of the

residuals with respect to the alignment parameters. This can be done either analyti-

cally or numerically. The choice of technique will depend on the individual situation.

If working in a highly non linear magnetic field then analytical derivatives are very

difficult to compute and thus a numerical calculation would be the clear choice. Ex-

ploring the analytical calculation of the derivatives helps in the understanding of the

alignment procedure.

5.4.1. Transformation between coordinate frames

Consider the transformation between the global coordinate frame x to the local frame

x′ such that

x= T + Rx′, (5.23)
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where R and T are rotations and translations respectively. The combined operation

of the rotation and translation will be called a transformation and represented by the

symbol 5 .

The subsequent transformations do not commute and as such

5051 ̸= 5150, (5.24)

unless the rotations in either transformation are null.

5.4.2. Translations and Rotations

To define the position and orientation of a three dimensional object from a known ref-

erence point requires the knowledge of the transformation between the two reference

frames. To define this transformation requires the knowledge of six parameters, those

being three translations and a rotation describe by three parameters. In ATLAS the

translations have been selected to be defined by movements in the cartesian frame

(Tx , Ty , Tz) and by rotations around the cartesian axes (Rx , Ry , Rz).

It should be noted that although there are six possible degrees of freedom (DoF) per

detector module, it might be impossible to determine all six of those DoF. The ability

to determine all DoF is dependant on the read out geometry of the detector. For

example if trying to align a drift tube it is impossible and also useless to determine

the rotation of the wire long the wire axis.

A general rotation in three-dimensional Euclidean space can be decomposed into

three successive rotations about the three orthogonal axis. In this case it was cho-

sen to represent them as a rotation by an angle φ around the x -axis

Rx(φ) =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎞

⎟
⎟
⎟
⎟
⎠

,
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a rotation by an angle θ around the y-axis

Ry(θ ) =

⎛

⎜
⎜
⎜
⎜
⎝

cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ

⎞

⎟
⎟
⎟
⎟
⎠

,

and a rotation by an angle ψ around the z-axis

Rz(ψ) =

⎛

⎜
⎜
⎜
⎜
⎝

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The full rotation matrix R= RxRyRz can be expressed as

R(φ,θ ,ψ) =
⎛

⎜
⎜
⎜
⎜
⎝

cosθ cosψ − cosθ sinψ sinθ

cosφ sinψ+ sinφ sinθ cosψ cosφ cosψ− sinφ sinθ sinψ − sinφ cosθ

sinφ sinψ− cosφ sinθ cosψ sinφ cosψ− cosφ sinθ sinψ cosφ cosθ

⎞

⎟
⎟
⎟
⎟
⎠

.

For the sake of simplicity it is often useful to consider the case when all angles are

small. As such R can be approximated to

R =

⎛

⎜
⎜
⎜
⎜
⎝

1 −ψ θ

ψ 1 −φ

−θ φ 1

⎞

⎟
⎟
⎟
⎟
⎠

.

5.4.3. Analytical derivatives

The accuracy of the residual derivatives with respect to the track and alignment pa-

rameters plays a very important role in the construction of the equations that describe

the alignment problem. The residuals are calculated in the local measurement frame

and it is wished to correct the misalignments of modules in the local measurement

frame. The analytical calculation of the derivatives for alignment corrections in the
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local module frame can be found in this section (a derivation of the derivatives for

alignment corrections in the global frame can be found in[55]).

Defining the track position in the measurement frame (local frame) as x′ = (x ′, 0, 0)

and consider a small change in position (δx ,δy ,δz). Then the change in the x com-

ponent of point at which the track intersects the x -y plane of the becomes

∆x ′ = δx −δz

nx

nz

, (5.25)

where (nx , ny , nz) is the vector parallel to the track at the measurement planes surface.

Hence the derivative of a residual with respect to a change in the position of the track

in the measurement frame is given by

⎛

⎜
⎜
⎜
⎜
⎝

∂ r/∂ x ′

∂ r/∂ y ′

∂ r/∂ z′

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1

0

−nx/nz

⎞

⎟
⎟
⎟
⎟
⎠

.

Now consider the infinitesimal rotation δR = 1+ϕ and the infinitesimal translation

δT = τ of the measurement frame

x′ → τ+ (1+ϕ)x′.

Observed in the global frame this becomes

x = T + R(τ+ (1+ϕ)x′), (5.26)

for which the inverse transformation is given by

x′ = (1+ϕT )RT (x− T − Rτ)

= RT (x− T )−τ+ϕT RT (x− T ) +O(ϕτ). (5.27)

As such the results of the derivatives with resect to the translations are

⎛

⎜
⎜
⎜
⎜
⎝

∂ r/∂ τx

∂ r/∂ τy

∂ r/∂ τz

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

−1

0

nx/nz

⎞

⎟
⎟
⎟
⎟
⎠

.
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The result for the residual derivatives with respect to the rotations are

⎛

⎜
⎜
⎜
⎜
⎝

∂ r/∂ ϕx

∂ r/∂ ϕy

∂ r/∂ ϕz

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

nx/nz

I

RT
x y∆Tx + RT

y y∆Ty + RT
z y∆Tz

J

−(RT
xz
+

nx

nz
RT

x x
)∆Tx − (RT

yz
+

nx

nz
RT

y x
)∆Ty − (RT

zz
+

nx

nz
RT

zx
)∆Tz

RT
x y
∆Tx + RT

y y
∆Ty + RT

z y
∆Tz

⎞

⎟
⎟
⎟
⎟
⎠

, (5.28)

where ∆Ti is the i th component of the vector x− T .

The expressions for the derivatives of the y-residual can be obtained in a similar

fashion as the derivatives to those of the x -residuals. The result for the residual

derivatives with respect to the translation are

⎛

⎜
⎜
⎜
⎜
⎝

∂ r/∂ τx

∂ r/∂ τy

∂ r/∂ τz

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0

−1

ny/nz

⎞

⎟
⎟
⎟
⎟
⎠

.

The result for the residual derivatives with respect to the rotations are

⎛

⎜
⎜
⎜
⎜
⎝

∂ r/∂ ϕx

∂ r/∂ ϕy

∂ r/∂ ϕz

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

(RT
xz
+ ny/nzR

T
x y
)∆Tx + (R

T
yz
+ ny/nzR

T
y y
)∆Ty + (R

T
zz
+ ny/nzR

T
z y
)∆Tz

−ny/nz(R
T
x x∆Tx + RT

y x∆Ty + RT
zx∆Tz)

−RT
x x∆Tx − RT

y x∆Ty − RT
zx∆Tz

⎞

⎟
⎟
⎟
⎟
⎠

.

5.5. Constraining Systems of Linear Equations

The matrix produced by the alignment procedure is unfortunately symmetric semi

positive definite. The singular nature of the matrix is a result of unconstrained global
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degrees of freedom, for example global rotations or translations of the system. These

movements do not effect the residuals of the system, and hence the minimisation

is not sensitive to them. In order to have a viable solution the unconstrained DoF

need to be constrained. In the following section a number of different techniques

will be presented for constraining the system of equations produced by the alignment

procedure.

5.5.1. Alignment Parameter Constraints

How to apply constraints directly to the alignment parameters. Redefining the χ2 to

include the alignment parameter constraint

χ2 =
∑

Tracks

rT V−1r+ (α−α′)T S−1(α−α′), (5.29)

where α′ is the value of the alignment parameters which is wished to constrain and

S is the covariance matrix of the constraint. Minimising the χ2 with respect to the

alignment parameters leads to

0 =
∑

Tracks

drT

dα
W

)

r(p0,α0) +
dr

dα0

(α − α0)

*

+ S−1(α−α′). (5.30)

If it is assume that we wish to constrain the parameters to current positions i.e. α′ =

α0 then solution is quite simple.

0 =

?

∑

Tracks

drT

dα
W

dr

dα0

+ S−1

@

(α − α0) +
∑

Tracks

drT

dα
W · r(p0,α0). (5.31)

Upon comparing this result to the basic alignment solution shown in Equation 5.6 it

is clear that! →! + S−1. Evidently the better defined the matrix! is (i.e. the

more tracks used) the lower the influence of the alignment parameter constraint.

The matrix! can be diagonlised and written as! = PDPT (see Section 5.6.1). Also

as P is a square matrix, assuming that the constraint covariance matrix S ∝ 1 then it

can be written that

PDPT → P(D+ S−1)P
T
. (5.32)
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Therefore constraining the alignment parameters has the effect of increasing the

eigenvalues of the matrix ! . As the eigenvalues of ! are non-negative any ad-

dition of an identity like matrix is going to ensure that the matrix is positive definite

and hence the problem becomes soluble.

This method of constraining the track parameters is the simplest form of the con-

straint, but can be generalised so that movements of groups of modules are con-

strained to some level of certainty and as such the χ2 for this constrained system is

represented by

χ2 =
∑

Tracks

rT V−1r+G(α)T S−1G(α), (5.33)

where G(α) describes the constraint and S is the covariance matrix for the constraint.

5.5.2. Track Parameter Constraints

Constraining the individual parameters of each track is useful when trying to remove

systematic distortions and/or reduce the chance of introducing them. If there is a

reliable secondary measurement of a track parameter, for example the momentum,

it is possible to constrain the momentum of the track by adding an appropriate term

to the matrix. However, any systematic biases in the secondary measurement would

result in biases to the system alignment. Biases must be identified and understood

before the use of such a technique.

χ2 is redefined to include the track parameter constraint:

χ2 =
∑

Tracks

rT V−1r+ (p− p′)T S−1(p− p′), (5.34)

where p′ is the track parameter to be constrained and S is the covariance which

defines the constraint of the track parameters, p. The solution to the constrained

track fit is

p̃− p0 = −(AT W A+ S−1)−1(A
T
W · r(p0) + S−1(p0− p′))

= −J−1(AT W · r(p0) + S−1(p0− p′)). (5.35)
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Following in a manner similar used to obtain basic solution of the alignment param-

eters (Equation 5.10), it can shown that the solutions to the alignment parameter

corrections, with application of a track parameter constraint[104] can be represented

as

α−α0 = −

?
∑

t racks

∂ rT

∂α
Ŵ
∂ r

∂α

@−1

⎡

⎣

∑

t racks

∂ rT

∂α

!

Ŵ+WAJ−1S−1J−1ATW
"

r

+
∑

t racks

∂ rT

∂α
WAJ−1S−1(J−1S−1 − 1)(p− p′)

⎤

⎦ ,

where Ŵ is now defined as

Ŵ=W−WAJ−1ATW. (5.36)

Clearly if one wanted to completely fix a track parameter it would be possible to do so

by removing it from the matrix A which contains the first derivative track parameters.

This technique can be used to apply a vertex constraint if the prior knowledge of the

vertex is known.

5.5.3. Lagrange Multipliers

The method of Lagrange multipliers (LM) is a powerful tool for finding the maxima or

minima of function for a given constraint. In general the constraint can be non-linear,

and linearised using a Taylor series expansion around initial values with higher terms

being ignored.

To illustrate how LM are applied to a χ2 problem consider a simplified example

χ2 = rT V−1r, (5.37)

where r is the residual and is defined by r =m−Hx. Where m is a measurement

vector, H is the linear measurement model and x is the vector of parameters to be
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estimated. Finding the minimum of χ2 we obtain

∆x = −(HT V−1H)−1HT V−1r(x0). (5.38)

Applying a linearised constraint of the form Bx− b = 0 transforms the χ2 to

χ2 = rT V−1r+ 2λT (Bx− b), (5.39)

where λ are the Lagrange multipliers and are just constants which indicate the amount

of work required to enforce the constraint. When minimised with respect to x yields

the following

dχ2

dx
= 0

0 = Cx− c+BTλ (5.40)

(5.41)

where C= HTV−1H and c= HT V−1r(x0). Solving for the parameters of the system:

∆xc = −(HT V−1H)−1HT V−1r(x0) + (H
T V−1H)−1BTλ (5.42)

= ∆x+ (AT V−1H)−1BTλ. (5.43)

Solving for λ yields

λ=
K

B(HT V−1H)−1BT
L−1
(Bx− b). (5.44)

The Lagrange Multipliers constrained χ2 estimator can be seen as just a corrected

version of the unconstrained least squares estimator.

This can be applied to the system of equations in the following way

⎛

⎜
⎝

C BT

B 0

⎞

⎟
⎠

⎛

⎜
⎝

x

λ

⎞

⎟
⎠ =

⎛

⎜
⎝

c

b

⎞

⎟
⎠ . (5.45)

The big advantage of this technique lies in the fact that the sparsity of the matrix is

well preserved although the size of the matrix will increase by the number of con-

straints applied. There is a price to be paid which is the freezing of the constrained
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shape into the detector. As no uncertainty can be applied to the constraint it is ab-

solute. This is not ideal for alignment. Each constraint must be evaluated to ensure

that the shape is not in fact a true misalignment of the detector. However, LM can be

used to give the system of equations a frame of reference and to remove degrees of

freedom that the system is relatively insensitive to thereby allowing for a well defined

solution.

5.5.4. Eliminating/Fixing modules

Often there is a need to eliminate certain modules from the alignment problem. This

may be because the modules do not have enough hits or the data from a module is

deemed to be unreliable.

There are two very different ways to remove modules:

• Removing the unwanted modules from the detector setup, the tracks are fit with-

out the hit information corresponding to the eliminated modules.

• Removing the corresponding modules from the solution, by discarding the rows

and columns from the matrix! and contracting the vector " .

The difference between the two methods have direct consequences for the properties

of the alignment solution. In the first method the removal of a module is complete and

the removed modules will have no influence on the final alignment and the remaining

system preserves all genuine features.

In the second method, the a posteriori removal of the module will alter the basic prop-

erties of the solution. In particular the singularity of the solution may be eliminated.

Consider a χ2-invariant mode which is described by an eigenvector 7 (see Section

5.6.1 for further details). Assume that the mode involves the module l that we want

to discard from the solution. We have

!7 = 0. (5.46)

We can discard the rows and columns associated to the module l from the matrix

! as well as from the eigenvector S, and call them ! and 7 respectively. If 7
was to remain a singular mode of M, it is needed for each i

∑

j!i jSj = 0 and for

each i ̸= l
∑

j ̸=l!i j7 j = 0. This implies that for each i ̸= l !il = !l i = 0, and
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as such module l has no correlation to any other module. Such a situation would

be impossible in this alignment procedure. Consequently, the mode 7 will cease to

be singular due to elimination of a relevant degree of freedom. Technically, such

an a posteriori elimination is equivalent to freezing of the corresponding degrees of

freedom, which has consequences for the rest of the system. In particular the system

will not be free to move in its global six DoF’s as some elements have been pinned

down and immobilised.

5.6. Linear equation manipulation

To find the correction to the alignment parameters, Equation 5.10 needs to be solved

for ∆α. Using this alignment technique on a detector system as large and complex

as the ATLAS Inner Detector will require the solution of a large system of equations

(∼ 35000× 35000). There are a number of ways to solve such problems, but firstly

let’s simplify the notation by defining the minimization problem in the simplified form

!δα = " . Solving such a large system in the general case on a single computer is

practically impossible due to the memory requirements and the CPU time required to

solve such a problem. The amount of memory used and time required to solve the

problem can be reduced by utilizing some of the properties of the matrix! .

5.6.1. Eigenvalues

The eigenvalue distribution of the matrix provides information about the "weak modes"

of the system. These weak modes are linear combinations of alignment parameters

that are relatively poorly constrained or χ2-invariant. The matrix ! is square and

can be written as

! = PDP−1, (5.47)

and in the case of a real symmetric matrix

! = PDPT , (5.48)

where P is an orthogonal matrix (i.e. PT = P−1) whose columns are the eigenvector of

! , and D is a diagonal matrix whose entries are the eigenvalues of! . This process
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is called diagonalisation and it is clear to see that the matrix! is invertible (hence a

solution for x can be found) only if all of the eigenvalues are non-zero.

Diagonalisation is a non trivial process, however there are a number of packages that

provide a solution, for example, LAPACK’s DSPEV [107]. Assuming diagonalisation

can be performed, the solution is quite trivial.

δα=!−1" = PD−1P
T" . (5.49)

As the reciprocal of the eigenvalues can be seen to appear in the solution, the smallest

eigenvalues will lead to a large statistical uncertainty in δα. To illustrate this inspect

the covariance matrix for δα, which is the inverse of matrix! .

COV (δα) =!−1 = PD−1P
T
. (5.50)

The diagonal elements of the matrix!−1 are the variance of the alignment parame-

ters. Thus if any of the eigenvalues of! are small, this will then translate to a large

value in D−1 and hence the variance of δα.

In the case of an under-constrained system a number of the eigenvalues can be near-

zero with a subset or all of the parameters α having infinitely large uncertainty. An

example of such a situation is a global transformation. This would leave the χ2 un-

changed. If such degrees of freedom are not removed from the system of equations,

the number of solutions would be infinite (see Section 5.5 for further details).

A method of removing the poorly constrained degrees of freedom is by omitting cer-

tain eigenmodes from the solution. This is accomplished by limiting the sum in the

Equation 5.51, which is just a reinterpretation of Equation 5.49

δα=
∑

j

〈pj," 〉
dj

p j, (5.51)

where 〈, 〉 is the inner product, dj ≡ Dj j and p
j
i ≡ Pi j. This seems quite a simple

solution but it is necessary to determine at what point to set the threshold. In addition

it should be noted that the scale of eigenvalues can be changed.
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5.6.2. Rescaling the System

Rescaling the eigenvalue spectrum can help iterative techniques reach a solution

quicker by transforming the matrix! into something closer to the identity matrix.

The key to any preconditioning is that it must be quick.

Rescaling with approximate solutions

S!δα= S" . (5.52)

If S is approximately !−1 then the matrix S! will approximately equal I . This

situation is ideal for iterative solvers, but as the matrix is no longer symmetric, it will

generally make calculation of the solution more computationally intensive

Rescaling with approximate Cholesky factorization

To leave the matrix symmetric the following transforms need to be applied

(S!ST )(S−T x) = S" , (5.53)

where S is a square matrix of rank equal to that of ! . If the matrix is symmetric

positive definite it is possible to decompose the matrix to

! = LLT , (5.54)

where L is a lower triangular matrix. This is known a Cholesky decomposition. A full

Cholesky decomposition can take as long as a matrix inversion . Using an approximate

Cholesky factorization technique we are able rescale the matrix and keep it symmetric.
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Giving the eigenvalues meaning

The matrix can not only be rescaled to reduce the computation time required, but can

also be rescaled to give the eigenvalues meaning. Defining S in Equation 5.53

Si,i =

1

Nhits

!i,i

, (5.55)

the system has been rescaled proportional to the number of hits in each module, Nhits.

In the extreme, and unlikely, case when! is diagonal the eigenvalues of the matrix

are equal to the number of hits in the module.

5.7. Solving Large Systems of Linear Equations

When solving a linear system of equations the properties of the matrix determine

which solution technique should be used. As described earlier, the matrix produced

during alignment is symmetric, and without constraints, singular. The various con-

straint techniques can change the matrix type into a positive definite or a definite

matrix. Practical experience shows that without any preconditioning the matrix will

also be poorly conditioned i.e. the eigenvalues are spread over in excess of ten orders

of magnitude.

Finding a solution to a system with a large number of DoF is both computationally

and memory intensive. The size and condition of the matrix machine may also require

machine precision to be taken into account when choosing a solution technique.

5.7.1. Diagonalisation of the matrix

There are a number of software packages that are able to provide a solution, for ex-

ample, LAPACK’s DSPEV[107]. The computation time for diagonalisation in general,

scales as O(DoF3). Solving for very large systems soon becomes untenable on a sin-

gle machine, so studies have been performed with parallel computing[108]. Parallel

computing, given enough resources, will allow for digonalisation to be performed on

large systems of equations. They do however require some effort to setup and operate
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but given the recent trend towards multi-core CPU development this type of technique

might again become favorable.

5.7.2. Solvers

Linear equation solvers have been developed to solve large systems of linear equations

for a variety of different applications. Most of the techniques have been developed

with a rather specific problem in mind so the selection of the correct technique can

improve the computation time significantly. A common feature seen in almost all of

the solvers is that they do not directly invert the matrix but obtain a solution to the

problem, in the process reducing the computation time and memory required. The

solvers discussed utilise the matrix’s sparsity to reduce the computation time of the

solution.

Iterative Solvers

Iterative solvers, in general, do not try and compute the inverse of the matrix but

rather try to calculate the solution vector x which minimises ∥ Ax − b ∥, where A is

the matrix and b is the vector. Computation time for this type of procedure varies but

generally scales as O(DoF2) or better. The memory requirements for iterative solvers

are considerably lower than that of diagonalisation or inversion. MINRES[109] is one

such package that solves sparse symmetric linear.

It has been reported by the CMS alignment team that for a 12015 × 12015 matrix,

an inversion took ∼ 12 hours while the MINRES only took 32 seconds[101]. Initial

trials using MINRES were quite disappointing taking almost as long to solve the system

using the iterative approach as the full inversion.

To reduce the computation time, approximate solutions to the matrix inversion can

be used to improve the condition of the matrix. It was found that preconditioning the

matrix using an approximate Cholesky factorization routine significantly reduced the

number of iterations required for the system to converge but the performance was

still nowhere near what the CMS team were able to obtain. Other iterative packages

optimized for such a process include the routines F11JAF F11JCF in the NAG pack-

age[110]. Using this package it was possible to solve the system in a time that was

comparable to that of the CMS result.
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Singularities within the matrix can pose a significant problem for iterative solvers as

∥ ∆x ∥, which generally serves as part of the termination criteria, can continue to be

large whilst the magnitude of the residual (∥ Ax − b ∥) can be small.

A comparison of the performance of two iterative techniques as applied to the ATLAS

alignment problem a can be seen in Figure 5.1. It shows that time taken is significantly

lower than that of full diagonalisation. However beyond 10,000 DoF the algorithms

struggle.

Direct Solvers

In recent years a number of direct solvers for large, sparse and symmetric systems

have been developed. A critical review of the performance of a number of solvers was

undertaken in[111]. Two of the solvers evaluated MA57[112] and PARDISO[113,114],

produced the best results for indefinite matrixes.

Both PARDISO and the precursor to MA57, MA27 [115], were tested on matrices cre-

ated using the global alignment procedure. Both were found to be very efficient at

solving a problem that took nearly an hour using diagonalization in less than ten sec-

onds. Using such a procedure on a 35000× 35000 matrix takes less than 2 minutes

(see Figure 5.1). It is also clear to see that the more modern PARDISO has a significant

advantage over MA27 once the matrix is larger than 15, 000× 15, 000.

Unlike the majority of iterative techniques, singularities do not pose a significant

problem for the majority of direct solvers as most have been developed to identify

singularities and remove them from the solution.

It is possible to calculate some of the eigenvalues and their corresponding eigenvec-

tors of the system by combining PARDISO and ARPACK[116]. This can be useful in

identifying the lingering χ2-invariant modes of the system. The time required to cal-

culate the eigenvalues and eigenvectors is very dependant of the structure the eigen-

value spectrum. For example, if the ten smallest eigenvalues are relatively close to

each other and the eleventh is orders of magnitude larger it would take a considerably

longer to calculate the first eleven eigenvalues than the first ten.

A cautionary note about sparse direct solvers. The amount of time and memory re-

quired to compute a solution is heavily dependant on the density and structure of the

matrix. If for example the density of the matrix > 10% then for a 20k×20k the mem-



100 Alignment of detectors with Tracks

ory requirements will exceed the capabilities of a 32 bit machine. In general use of

a sparse symmetric solver was found to be very advantageous when solving for large

systems (DoF> 5000) as it allowed a solution to be calculated in reasonable time on

a single computer.
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Pardiso

LAPACK (DSPEV)

NAG (F11DAF+F11DCF)

NAG (F11JAF+F11JCF)

Figure 5.1.: Solution time of various linear equation solvers. The LAPACK diagonalisation

routine DSPEV is represented by red solid squares. Two iterative solution tech-

niques from NAG are shown. F11DAF+F11DCF a conjugate gradient squared

method using incomplete LU factorisation preconditioning (solid green trian-

gles). F11JAF+F11JCF iterative Lanczos method with incomplete Cholesky fac-

torisation preconditioning (open violet squares). The sparse direct techniques

MA27 and PARDISO are represented by the solid black circles and the open blue

circles, respectively. All test were performed using symmetric positive definite

matrices with 32-bit binaries on an Intel Core 2 Duo CPU E6850 running at 3.0

GHz with 8 GB of memory.



6
CHAPTER

ALIGNMENT OF A TOY MODEL

To improve our understanding of properties of the alignment problem and their impli-

cations, a study of the alignment of a “toy model” is performed and presented in this

chapter. This simplified model allowed for an in-depth study of the properties of the

alignment problem in a very controlled manner. In the first section a description of

the toy model and its geometrical properties are outlined. In Section 6.2 the deriva-

tives of the alignment parameters of the toy model are presented. In Section 6.3 the

properties of the alignment matrix are discussed, and in Section 6.4 possible methods

of constraining the detector are investigated. Finally in Section 6.5 the accuracy of

the alignment parameters are explored in addition to their impact on the quality of

the reconstructed tracks.

6.1. Toy Model Geometry

To investigate the properties of the alignment problem a simplified model was created.

The model consisted of ten planes each with one module, each separated by 50 mm

101
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Figure 6.1.: Schematic diagram of the layout of the toy model containing 10 planes. The

green dots represent the beam spot and the red line represent the detector

planes.

Description Value

Module Dimensions Width = 100 mm

Height = 300 mm

Separation = 50 mm

Hit Resolution x = 10 µm

y = 30 µm

Module Hit Efficiency 98%

Misalignment Magnitudes x , y, z ∼ 100 µm

Rx , Ry , Rz ∼ 2 mrad

Table 6.1.: The toy model’s geometrical parameters

(see Figure 6.1). The dimensions of each detector module are 100 mm × 300 mm

with a resolution 10 µm in the x direction and 50 µm in the y direction.

Each detector module was randomly misaligned in the local frame of the module.

All translational misalignments were taken from Gaussian distribution with a mean

of zero and σ = 100 µm. All rotational misalignment were taken from a Gaussian

distribution with a mean of zero and σ = 2 mrad.
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The study presented here uses a linear track model of a particle in the absence of any

magnetic field giving the track four degrees of freedom. The tracks originate from

x = 0± 50 mm , y = 0± 50 mm, z = 0± 10 µm, with the first detector plane 50 mm

from the beam spot. This is similar to the situation expected in the barrel of the ATLAS

Inner Detector.

6.2. Derivatives in the Toy Model

The derivatives of the track parameters are quite simple as the track model is linear.

As such

f (p) = f (mx , cx , my , cy). (6.1)

The x position of the track at any given the z position is

x = mx z+ cx . (6.2)

Similarly the y position is given by

y = my z + cy . (6.3)

Hence the derivatives of the track with respect to the track parameters are

d f (p)

dmx

= z,
d f (p)

dcx

= 1,

d f (p)

dmy

= z,
d f (p)

dcy

= 1. (6.4)

To calculate the derivatives of the alignment parameters of the toy model we exploit

the inherit simplicity of the model. To transform a measurement from the local frame

of the module to the global frame of the detector only a simple translation is required

(0, 0, zplane). Thus making ∆T = (x , y, 0) (see Equation 5.28).
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Hence the derivatives of the x residuals with respect to the translations are

⎛
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⎜
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,

and the residual derivatives with repsect to the rotations are
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. (6.5)

Similarly the derivatives for the y residual with respect to the translations are
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and the derivatives with respect to the rotations are
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. (6.6)

The derivatives indicate that three alignment parameters(Tx , Ty and Rz) are directly

related to the measurement and three (Tz, Rx and Ry) are indirectly related. As a

result the alignment procedure is more sensitive to parameters Tx , Ty and Rz and less

sensitive Tz, Rx and Ry .

6.3. Properties of the Alignment Matrix

The properties of the alignment matrix (see Equation 5.13) play a vital role in assess-

ing techniques for the calculation of the alignment parameters. Without any modifica-
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Figure 6.2.: The eigenvalues of the toy model. Note to aid the visulisation, eigenvalues below

10−5 have been set to 10−5

tion the matrix is singular and consequently the problem is ill defined. To understand

why the matrix is singular it is informative to look at the eigenvalues and eigenvectors

of the matrix.

6.3.1. Eigenvalues and Eigenvectors

The alignment matrix is symmetric and can be diagonalised to obtain the eigenvalues

and associated eigenvector of the matrix (see Section 5.6.1 for details). Shown in

Figure 6.2 are the eigenvalues of the toy model for a perfectly aligned detector using

10,000 tracks. Of note are the nine eigenvalues (Mode 50 and above in Figure 6.2)

which are significantly smaller than the remainder of the eigenvalues. These eigen-

values correspond to nine poorly constrained degrees of freedom. The eigenvectors

associated to the small eigenvalues show which of the detector movements are not

constrained by the data. Figure 6.3 displays the eigenvectors corresponding to the

nine smallest eigenvalues. Six of the eigenvectors display the global translations or

rotations of the detector and are a direct result of the alignment system not having a

frame of reference fixed in space.



106 Alignment of a Toy Model

The remaining three poorly constrained degrees of freedom are caused by the choice

of track model. There are coordinated movements of the detector modules that leave

the final χ2 of all tracks invariant but will distort the measured track parameters.

These are exactly the type of detector distortions which need to be controlled and

understood as they are not able to be corrected via track based alignment. The dis-

tortions that will allow for the χ2 to be invariant are of the same type as the track

model, and hence are linear (Ti ∝ mz+ c). This leads to six degrees of freedom, three

of which (the constant translations) are identical to the global translations (Ti ∝ c)

while the other three are new degrees of the system and are of the form Ti ∝ mz.

If, instead, the track model is helical, and thus approximately parabolic in the bending

plane and linear in the non bending plane (see Section 4.3.3), an additional uncon-

strained degree of freedom arises. Assuming a barrel like system, with x ∼ rφ, z = r

and y = z. There is an additional degenerate degree of freedom corresponding to

detector movements of the type Trφ ∝ r2. This additional degree of freedom can be

removed if a mix of both straight and parabolic tracks are used. However, in reality

turning off the magnetic field may cause the detector move so cannot be considered.

As such it should be treated like all other poorly constrained degrees of freedom.

The other noteworthy observation is the structure of the eigenvalue spectrum. There

is a number of distinct steps in the spectrum where each block of eigenvalues corre-

sponds to movements of particular degrees of freedom of the system. For example the

first eight eigenvalues correspond to the translations in the x direction of the module.

The cause of these steps is quite simple to explain. The eigenvalues are inversely pro-

portional to the uncertainty of the movement represented in the eigenvector. Given

that each module has the same number of hits in it the statistical uncertainty of each

like correction is going to be approximately same for each module. Hence the eigen-

values associated to each movement type are similar in magnitude. The small vari-

ations in them seen beyond the first three plateau’s are caused by the fact that the

derivatives of the alignment parameters depend on the position at which the track

intersects the surface of the module. As each module is not illuminated in a spatially

uniform manner, the eigenvalues differ.

As each module has six degrees of freedom and there are ten modules, it would be

expected that there would six blocks each consisting of ten eigenvalues. However,

some movements are degenerate (e.g. global rotations ) which reduces the num-

ber of eigenvalues per block. In order to have a stable and viable solution the nine
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(a) Eigenvector 60: ∆Rz ≈ c
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(b) Eigenvector 59: ∆Rx ≈ c
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(c) Eigenvector 58: ∆Ry ≈ c
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(d) Eigenvector 57: ∆Tz ∝ z
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(e) Eigenvector 56: ∆Tz ∝ z
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(f) Eigenvector 55: ∆Ty ≈ c
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(g) Eigenvector 54: ∆Ty ∝ z
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(h) Eigenvector 53: ∆Tx ≈ c
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(i) Eigenvector 52: ∆Tx ∝ z

Figure 6.3.: The eigenvectors of the alignment matrix corresponding to the nine smallest

eigenvalues from the unconstrained toy model. Along the x axis of each plot

are the alignment parameters while the y axis shows magnitude of the correc-

tion. The first ten parameters correspond to a translations in the x direction of

the 10 modules, parameters 11-20 correspond to the translation in the y direc-

tion, parameters 21-30 correspond a translation in z direction, parameters 31-40

correspond to a rotations around the x -axis, parameters 41-50 correspond the

rotations around the y-axis, and parameters 51-60 correspond a rotation around

the z-axis

unconstrained degrees of freedom need to be constrained using one of a number of

techniques.

6.3.2. The Effect of Detector Inefficiencies

Up to this point it was assumed that the detector and all of its elements were 100%

efficient. In reality there is no such thing as a perfect detector and effects like hit
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Figure 6.4.: Eigenvalues of the alignment matrix from the unconstrained toy model that is

98% efficient

efficiency, multiple scattering and energy loss need to be taken into account. Although

it is a bit beyond the scope of the toy model to take into account the multiple scattering

and energy loss, it is quite a simple task to take into account detector efficiencies.

To investigate the effect of detector efficiencies, the more realistic conditions that

each detector module is 98% efficient is imposed and a minimum of five hits out of

a possible ten is required to form a track. The eigenvalues of such a system differ

significantly from that of the perfect system (see Figure 6.2 for the perfect system and

Figure 6.4 for the imperfect system).

No longer is there a strong differentiation between the unconstrained degrees of free-

dom and the well defined, which makes identifying the poorly constrained degrees of

freedom much more difficult. Nor are there clear and distinct steps in the spectrum.

A possible reason for this is that the tracks become less well defined (fewer hits) and

resultantly the corrections are less well defined.

The nine unconstrained degrees of freedom identified for the perfectly efficient detec-

tor are present but are buried amongst the other random movements of the detector

modules making identification of the unconstrained degrees of freedom quite diffi-

cult. This is especially the case when it is practically impossible inspect all of the

mode of the detector.



Alignment of a Toy Model 109

6.4. The Effect of Constraining the System

In order to have a non singular matrix, and hence a viable solution, the unconstrained

degrees of freedom need to be removed from the problem. There are a number

possible techniques that have been proposed (see Section 5.5). In this section the

effectiveness of each of the techniques is investigated. Unless otherwise stated, the

results shown are based upon of nine iterations using 10,000 tracks.

6.4.1. Lagrange Multipliers

As the unconstrained degrees of freedom of the alignment problem have been identi-

fied (see Section 6.3.1 ) it is possible to explicitly constrain them through the use of

Lagrange Multipliers (LM). There are nine unconstrained degrees of freedom, requir-

ing nine LM to ensure that system is not singular.

To fix each of the global shifts we can apply the following three constraints to the

alignment parameters

∑

Module

Ti = 0 where i = x , y, z. (6.7)

Similarly the global rotations of the system can be constrained by insisting that the

sum of the rotations is zero:

∑

Module

Ri = 0 where i = x , y, z. (6.8)

Finally the three additional unconstrained degrees of freedom introduced by the track

model can be constrained

∑

Module

Ti · zModule = 0 where i = x , y, z. (6.9)

As a direct consequence of using LM, the matrix now has both positive and negative

eigenvalues. It is an indefinite matrix (see Figure 6.5). Although this will not fun-

damentally change the interpretation of the problem it may influence the solution

technique chosen.
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Figure 6.5.: The eigenvalue spectrum for the misaligned toy model that has been constrained

with Lagrange Multipliers. To simplify the visulisation, eigenvalues with negative

values are shown by the dashed red line while solid black line represents positive

eigenvalues.

The results of the alignment procedure can be seen in Figure 6.6. They show no signs

of global misalignments or systematic distortions. The resolution obtained on the

alignment parameters that are directly measured, Tx and Ty , indicates an alignment

resolution much greater than that of the module measurement read out, which is

expected given that each module has ∼ - (10k) hits.

Caution must be taken when using LM constraints as they may lock in any pre-existing

systematic deformation of the detector. If only movements that are truly χ2-invariant

are restricted then this method is completely valid as those movements are unable to

be corrected by track-based alignment alone. It should be noted that identifying all

χ2-invariant modes of the detector may prove to be more difficult than in this very

simple case.

6.4.2. Eigenvalue Selection

As shown previously the eigenvalues of the system can be used to identify the uncon-

strained degrees of freedom of the system. By limiting the sum in Equation 5.51 those

poorly constrained degrees of freedom can be excluded from the solution.
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Figure 6.6.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model which has been constrained

with Lagrange Multipliers.

In the case of a 100% efficient perfect detector selecting the appropriate cut position

is quite obvious as there is clear separation between the constrained movements and

the unconstrained movements. For this reason an eigenvalue cut of 1 was selected as

it would eliminate the 9 unconstrained degrees of freedom. The results are shown in
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Figure 6.7.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model with 100% detector efficiency

when a eigenvalue cut of 1 is applied.

Figure 6.7, and as hoped the corrections show no systematic distortions and the final

parameter resolution is good.

When the detector is not 100% efficient, the eigenvalues don’t exhibit a clear choice

for the eigenvalue cut. By setting the cut at 100 only 2 modes are not included in the
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solution. The results are shown in Figure 6.8 and clearly exhibit strong systematic

biases of all parameters.

By selecting the cut at 1000 the lowest 15 modes are not included in the solution (see

Figure 6.9) and the results still exhibit strong biases. This suggests that not all of the

poorly constrained modes are excluded results (inspecting the eigenvectors confirms

this). Another significant observation is that the alignment parameters Rx and Ry

are not corrected. This suggests that these corrections associated to these parameters

have rather low eigenvalues.

Knowing exactly how many unconstrained degrees of freedom there are in this sys-

tem, it would be hoped that an a priori cut on the eigenvectors would remove these

unconstrained degrees of freedom. However without any clear indication of where

to place this it somewhat negates the effectiveness of this technique. The use of this

technique will need to be studied on a case by case basis as there is no grantee that

the system will be free from systematic distortions.

6.4.3. Alignment parameter constraints

The action of constraining the alignment parameters to their original position is an-

other technique to ensure that the matrix is not singular. If the correct uncertainty on

the alignment parameters is used to constrain them the system converges at a similar

rate as to that using Lagrange Multipliers and final parameter resolution is similar.

However three of the alignment parameters, the rotations, are significantly biased

(see Figure 6.10).

As it is unlikely that the uncertainty on the alignment parameters is going to be known

exactly, the effects of under or over estimating the uncertainty on the alignment pa-

rameters was investigated. The uncertainties of the alignment parameters were scaled

by varying amounts on the alignment system using 1000 tracks. It should be noted

that the number of tracks used changes the effectiveness of this technique as the

more tracks used the better defined the matrix ! becomes, while the effect of the

alignment parameter constraint reduces.

Figure 6.11 shows the mean and the RMS of the rotations around the z axis varied as

a function of the error scaling. It is clear that if the assumed uncertainty on the align-

ment parameters is significantly underestimated then the alignment parameters may



114 Alignment of a Toy Model

Module z (mm)
0 50 100 150 200 250 300 350 400 450

m
)

µ
 (

x
 T

∆

-60

-40

-20

0

20

40

60

80

100

120

(a) Final ∆Tx

Module z (mm)
0 50 100 150 200 250 300 350 400 450

m
)

µ
 (

y
 T

∆

-20

-15

-10

-5

0

5

(b) Final ∆Ty

Module z (mm)
0 50 100 150 200 250 300 350 400 450

m
)

µ
 (

z
 T

∆

-20

-10

0

10

20

(c) Final ∆Tz

 (mrad)x R∆
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
u

m
b

e
r 

o
f 

M
o

d
u

le
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) Final ∆Rx

 (mrad)y R∆
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

N
u

m
b

e
r 

o
f 

M
o

d
u

le
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) Final ∆Ry

 (mrad)z R∆
-0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17 -0.16 -0.15

N
u

m
b

e
r 

o
f 

M
o

d
u

le
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f) Final ∆Rz

Figure 6.8.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model with 98% detector efficiency

when a eigenvalue cut of 100 is applied.

not completely converge within the given iterations. Over estimating the uncertainty

resulted in the complete rotations of the detector becoming magnified.

However, the uncertainty needs to be unreasonably incorrect to affect the final track

quality. In fact even being an order of magnitude out does not really affect the con-
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Figure 6.9.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model with 98% detector efficiency

when a eigenvalue cut of 1000 is applied.

vergence of the alignment at all. It is not until the assumed uncertainty is incorrectly

estimated by more than an order of magnitude that the effects can be seen. Overesti-

mating the assumed uncertainty does not constrain the alignment equations enough

allowing χ2-invariant movements of the detector to effect the final result. Note that
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Figure 6.10.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model which has had an alignment

parameter constraint.

in Figure 6.12 when the system is poorly constrained that the track χ2/DoF slowly

drifts away from ideal values during later iterations. Underestimating the assumed

uncertainty of the alignment parameters will slow the convergence of the system and
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Figure 6.11.: The effect of scaling assumed uncertainty on the alignment parameters on the

average and RMS of final Rz.

may not allow the system to reach the ultimate minima which can be seen in Figure

6.12b.

6.4.4. Fixing modules

A very simple way to give the system a fixed frame of reference is to fix one or more

modules in place. Fixing one module will effectively constrain six degrees of freedom

and stop the global rotation and translation, but will not constrain the remaining three

higher order modes. In order to constrain those modes a second module needs to be
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Figure 6.12.: The the tracks average χ2/DoF versus the iteration. Correct error estimation

(solid black circles), error estimation ×0.01 (open red triangle) and error esti-

mation ×100 (solid blue triangle).
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fixed, or at least the three translational degrees of freedom need to be constrained.

Fixing enough modules will result in the matrix being symmetric positive definite.

This method, although technically very simple to implement, does have some unde-

sirable features. In particular the misalignments of the fixed modules are never cor-

rected and the remaining system is aligned with respect to these misaligned modules.

This problem can be negated by changing the modules that are fixed each iteration.

However in doing this there is no guarantee that the detector will not, after iterating,

see the effect of the original unconstrained degrees of freedom.

If for example two modules are randomly selected to be fixed during each iteration of

the alignment of the toy model then the results exhibit strong systematic distortions

(see Figure 6.13). It was noted that the problem took significantly longer to converge

when compared with the other techniques. This can be explained simply as each

iteration does not solve for all alignment parameters, just eight tenths of them (as

two of the ten modules are fixed).

Even starting from a perfectly aligned detector (see Figure 6.14 ) there are signs that

systematic distortions are be introduced into the system after nine iterations especially

in the Ty parameters (see Figure 6.14b ).

6.5. Alignment Parameter Accuracy

There are a number of factors that will determine the final accuracy of the alignment

parameters. The most obvious is the number of tracks used to find the alignment

parameters. Others include the diversity and the quality of the tracks used.

From the derivatives of the alignment parameters, the only two parameters that are

solely dependent on the detector resolution are the translations in the direction of the

measurements (i.e. Tx and Ty). The accuracy of all of the other alignment parameters

depend on not only the resolution of the detector measurements but also on the

geometry of the detector and the diversity of the tracks used. The resolutions of

the Tz corrections are dependent on (in addition to the measurement resolution) the

gradient of the tracks at the surface of the associated module. The rotation of the

modules around the z axis depends upon the position of the hit on the module. The

further the hit from the axis of rotation the better defined the rotational corrections.
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Figure 6.13.: The difference between the true positions and the positions calculated by the

alignment procedure for the misaligned toy model when two modules are ran-

domly selected, each iteration, to be fixed.

The final two rotations, Rx and Ry , depend upon both the gradient of the tracks and

position of the hits on the modules.
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Figure 6.14.: The difference between the true positions and the positions calculated by the

alignment procedure for starting with a perfectly aligned toy model when two

random modules are fixed

As most modules are positioned to maximise the surface area of the detector, tracks

pass through the detector perpendicular to the modules surface. Hence the, Tz, Rx ,

and Ry corrections require large statistics to become well defined.



Alignment of a Toy Model 121

6.5.1. Statistics

As would be expected from a linear system like this, the accuracy of the alignment

parameters depends strongly upon the amount of information used; in this case the

number of tracks used.To study the effect of the number tracks used on the final

results the same misaligned system constrained with Lagrange Multipliers was aligned

with 10 to 100,000 tracks. Figure 6.15 demonstrates the effect that the number of

tracks have on the accuracy of the alignment parameters. All parameters exhibit the

same feature, σ ∝ n−1, where n is the number of tracks used. As there have only been

ten modules aligned, these results have significant statistical fluctuations.

These results cannot be taken at face value, as this a toy model, but give an indication

of the statistics required to obtain a certain resolution in a real detector. Given the

resolution in the x direction (y direction) was 10 µm (50 µm) it only takes 100 tracks

to obtain an alignment resolution one fifth of the measurement resolution. Even with

only 10 tracks the alignment of these parameters has been improved from the initial

misalignment of 100 µm.

With only 10 tracks the translational alignment parameters Tz (initial misalignment

10 µm) show no improvement and similarly the Rx and Ry (initial misalignment 2

mrad) parameters are not corrected. In fact the Ry corrections have degraded the

alignment. This shows the need to understand the magnitude of the initial misalign-

ments (so that the parameters can be constrained correctly).

This of course is a very ideal situation in which there is no material effects which

generally degrade the track quality. Higher statistics would be required to obtain

similar alignment parameter resolution in a true to life problem which has additional

degradation.

6.5.2. Geometrical effects

The toy model geometry was chosen to reflect the basic properties of the barrel of the

Inner Detector. The end-cap geometry presents additional challenges as the tracks

trajectory become very similar (very little beam spot spread in the x -y plane when

compared to the r-z plane). This means that the alignment parameters, with sensitiv-

ity dependent on the gradient of the tracks crossing the modules (Tz, Rx and Ry), will

be adversely effected.
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Figure 6.15.: The difference the true positions and the positions calculated by the alignment

procedure for the misaligned toy model which has been constrained Lagrange

Multipliers using varying numbers of tracks.

It is also interesting to note that when the tracks come from a common position, an

additional poorly constrained degree of freedom enter the system. The eigenvector

(see Figure 6.16a) associated to this eigenvalue shows that the rotations around the x

(parameters 30-40) and y axes (parameters 40-50) have a χ2-invariant mode propor-
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Figure 6.16.: The eigenvector and resulting displacements of the detector after nine iterations

of the alignment procedure (see text for details).

tional to 1/z. This new degree of freedom results in very strong systematic distortions

of the Ry parameters (see Figure 6.16b )

To understand how such a movement can be χ2-invariant consider a small rotation,

φ, around the y axis. This will effectively change the z position of the hit to

zi → zi +φxi, (6.10)

where xi and zi are the x and z position of the track at surface of module i. As the

track is linear, the x position of the track is related to the z position via

xi = mzi + c, (6.11)

where m and c are constants. Substituting Equation 6.11 into Equation 6.10 results

in

zi → zi +φ(mzi + c). (6.12)

A constant shift of all modules in any direction will leave the χ2 of the track un-

changed. In order for a rotation around the y axis to leave the track χ2 unchanged, it

must translate all measurements a constant distance in the z direction. Assuming the

constant c≪ mzi, the rotation required at each surface should be

φi ∝ 1/zi, (6.13)
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as was observed.

If all tracks originate from a common position then this rotation is unconstrained.

This is something to be mindful of particularly when aligning the end-caps. If only

tracks from collisions are to be used, this characteristic can become problematic.

6.5.3. Track Quality

The track quality after alignment should be optimal if the system has converged to the

correct solution and as such the residuals and track χ2 distributions should exhibit

the same properties of the perfectly aligned (ideal) system. However having ideal

residuals and track χ2 distribution does not mean that the alignment of the detector

is correct.

Measurement Residuals

Mean (µm) σ (µm)

Ideal System -0.032 ± 0.098 8.705 ± 0.065

Misaligned System -58.483 ± 0.558 37.551 ± 0.545

Aligned System (Biased) 0.051 ± 0.099 8.746 ± 0.068

Aligned System (Unbiased) 0.003 ± 0.097 8.684 ± 0.065

Table 6.2.: Results of a Gaussian fit to the x residuals on the 6th module.

Table 6.2 shows the results to a gaussian fit of the residuals for the perfectly aligned

system (ideal), the misaligned system, and the aligned system when there are strong

systematic effect and no systematic effects. The residuals of both of the aligned sys-

tems are very close to those of the perfectly aligned system. They are both unbiased

(i.e. mean ≈ 0) and have the same resolution as the ideal case. Despite the presence

of a strong bias the final alignment results of the residuals look identical to the ideal

system. This is to be expected as the systematic biases are χ2-invariant and hence

“pull” and residual invariant.
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Track χ2

The tracks’ χ2 should be distributed according to the the χ2 PDF (see Equation 4.56).

Selecting tracks which have hits in all modules (i.e. 10 Hits), results in tracks with

16 DoF (20 measurements minus 4 track parameters). Figure 6.17 displays the fitted

χ2 of tracks that have hits in every layer for the four separate cases. The results of

a fit to the χ2 PDF are displayed in table 6.3. The results for all three cases are very

similar, showing that fits return a value for the number of DoF of the track consistent

with actual DoF of the track. This suggests that both alignment parameter sets have

been estimated well and that the measurement error estimates are correct.

Again despite the presence of a strong bias in the final alignment results, the χ2

distribution looks identical to that of the ideal system. This again shows the χ2-

invariant nature of the detector movements.
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Figure 6.17.: χ2 distribution for the tracks having 16 DoF
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Degrees of Freedom

Ideal 15.947 ± 0.068

Aligned (Biased) 15.925 ± 0.070

Aligned (Unbiased) 15.946 ± 0.068

Table 6.3.: Results of a fit to the χ2 distribution of tracks with 16 DoF from the toy model for

four different alignments

Track Parameters

The resolution of the reconstructed track parameters is ultimately what is of concern.

Figure 6.18 displays the difference between the reconstructed and true gradient of a

track for various situations. The most striking observation is that in the “unbiased”

aligned case there is still a small bias of the track parameters (although it is sig-

nificantly smaller than the biased aligned case). There is also a degradation of the

resolution of the gradient (see Table 6.4). The constant of the reconstructed line in

the y-z plane is also biased (see Table 6.5).

As the track χ2 and residuals are virtually ideal it suggests that there are some small

biases remaining in the "unbiased" solution. This is not surprising as the initial ran-

dom misalignment of the modules is undoubtedly a little biased given that there are

only 10 modules. Given that the alignment technique is insensitive to such misalign-

ment, an external source of information is needed to remove there distortions. This

could come from a secondary measurement of the track parameters from a known

well calibrated detector (for example the muon detector).

Mean (µm/mm) RMS (µm/mm)

Perfect 0.0018 0.1377

Misaligned -0.0012 0.2420

Aligned (Biased) -0.2703 0.2104

Aligned (Unbiased) 0.0597 0.1416

Table 6.4.: The Mean and RMS of the difference between the true and reconstructed gradient

of the track in the y-z plane
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Figure 6.18.: The difference between the true and reconstructed gradient of the track in the

y-z plane

Mean (mm) RMS (mm)

Perfect -0.0005 0.0416

Misaligned 0.0097 0.0749

Aligned (Biased) -0.0519 0.0694

Aligned (Unbiased) 0.0003 0.0431

Table 6.5.: The Mean and RMS of the difference between the true and reconstructed constant

of the track in the y-z plane

6.6. Summary

In the end all methods result in similar alignment parameter resolutions once global

distortions have been removed. The technique that was shown to be least reliable
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Constraint ∆Tx ∆Ty ∆Tz ∆Rx ∆Ry ∆Rz

Lagrange Multipliers 0.147 0.504 0.943 23.86 49.543 4.910

Eigenvalue Cut Ideal 0.131 0.376 1.211 25.21 95.541 5.934

Eigenvalue Cut Realistic 63.68 12.63 19.37 1312.1 1274.1 3.376

Alignment Parameter 0.168 0.379 1.25 25.787 94.531 5.977

Randomly Fixed Modules 35.87 48.68 35.34 19.19 54.183 6.397

Table 6.6.: Summary of the performance of the various constraint techniques used in the

global χ2 alignment algorithm. The table presents the RMS of the difference

between the alignment parameters and their true value

was eigenvalue cut. The lack of a clear location to place the cut could result in

some parameters not being corrected and systematic distortions being present. This

technique resulted in the worst alignment of all of the techniques tested.

Lagrange multipliers provide the best method to stop the introduction of χ2-invariant

distortions as it explicitly restricts their introduction. However, for this technique to

work, all modes must be known before the commencement of the alignment proce-

dure. A constraint on the alignment parameters is a foolproof way of ensuring the

matrix is not singular but does not guarantee that detector will not be systematically

deformed.

Constraints on the alignment parameters provide a foolproof method of reducing the

extent that χ2-invariant distortions factor in the final result. A combination of both

alignment parameters constraints and Lagrange multipliers could be applied to ensure

that all know and unknown χ2-invariant deformations are reasonably constrained.

In all cases it would be useful to a have a method of removing the systematic defor-

mations that are initially present. For example a constraint on the track parameters.



7
CHAPTER

ALIGNMENT OF THE ATLAS INNER

DETECTOR

In this chapter methods for aligning the ATLAS Inner Detector using the Global χ2

alignment algorithm are presented. In Section 7.1 the goals of the alignment are

outlined along with their motivation. The details of the ATLAS CSC simulation align-

ment challenge are discussed in Section 7.2 with the alignment procedure presented

in 7.3 and the results in 7.4. This work was collaborative effort that is documented

in[3]. An extension of the standard alignment procedure is presented in Section 7.6

which is developed by gaining an understanding of the properties of the alignment

(Section 7.5). This work is the sole work of the author

7.1. Aims of Alignment

The ATLAS detector is constructed of very high precision sub-detectors. This high

precision allows for the determination trajectories and momentum of jets and lepton

to the accuracy required by a range of possible physics processes. However, as with

129
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any high precision device, it must be well calibrated in order to take full advantage of

its intrinsic high precision.

The ATLAS Inner Detector has the capability of measuring space points along the

path of a charged particle to within a ∼ 20 µm. However, any misalignment of the

components of the ATLAS Inner Detector will prevent this potential accuracy of be-

ing attained. A direct result of any misalignment is that track-measurement residuals

generally increase and track parameter resolution is degraded. Furthermore, if mis-

alignments are severe enough to degrade residuals beyond expected values, some hits

may be mistakenly excluded from the track fit.

One of the requirements of ATLAS is that alignment imprecision should not degrade

the resolution of reconstructed track parameters beyond that expected from the inher-

ent space point resolution. The ATLAS Inner Detector Technical Design Report[117]

stated that the resolution of the track parameter be degraded by no more than 20%.

Device misalignments significantly affect the intrinsic detector resolution and there-

fore also will directly degrade the pattern recognition capability of the Inner Detector.

This in turn will degrade the physics performance and discovery potential of the whole

experiment. Furthermore, severe misalignments may effect the measured efficiency

of the detector[117]. Studies with simulated Monte Carlo events in the ATLAS detec-

tor established that to ensure that the track parameter resolution was not degraded

by more than 20%. An alignment precision of 7 µm for Pixel modules, and about 12

µm for SCT modules is required[118].

Beyond the effects on track reconstruction performance, the misalignments of the de-

tector elements will impact many aspects of the ATLAS physics performance, including

the muon and tau reconstruction and identification, the electron identification, jet cal-

ibrations, primary and secondary vertex reconstruction and b-tagging performance.

For example in the Higgs decay channels H → Z Z → 4ℓ with an expected mass (180

< mH < 400) GeV, with its four final state leptons, will require very good lepton

reconstruction and identification and efficiency in order to maximise its discovery

potential.

Misalignment also impacts the measurement of secondary vertices from decays of

long-lived particles such as b-mesons. The accurate measurement of vertices is strongly

dependant on a precise measurement of the track impact parameters. The distance

between the primary and secondary vertex is one of the key b hadron jet identification
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(b-tagging ) measurements. It has been found that a random misalignment of 10 µm

will result in a 10% reduction of the b-tagging efficiency[119].

The measurement of the W boson mass has been extensively studied and will require

the accurate measurement of tracks if it is to be performed with the desired accuracy.

An accurate measurement of the W mass will test the SM itself if the Higgs is found.

To achieve the desired accuracy (15-20 MeV/c2) on the W mass measurement, it will

be necessary to[24]:

• Understand the position of the modules to an accuracy of - (1) µm in the rφ

plane in order to achive the maximum hit resolution.

• Understand the solenoid magnetic field to better than 0.02%, to compute cor-

rectly the momentum.

• Determine the distribution of material within the ID detector to an accuracy of

1%, to account for Multiple Coulomb Scattering effects.

• Understand the transverse momentum (pT ) resolution to 1%.

The alignment requirements for the W mass measurement are the most stringent.

Several recent studies have further explored the impact of misalignments on physics

analyses using Monte Carlo simulations[120–122].

7.2. The ATLAS CSC Challenge

The Computing System Challenge (CSC)[27] provided a testing ground for the full

scale alignment procedures of the ATLAS detector. The alignment was performed on

a simulated misaligned detector that contained systematic distortions and random

detector element misalignments. The details of the generated misalignments are de-

tailed in Section 7.2.2.
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7.2.1. Description of the Simulated Data Samples

Muons from the Collision Point

For the alignment of the detector muons were selected to be used due to their near

ideal tracking properties. Muons act as minimum ionising particles through the detec-

tor and have minimal interactions with hadronic particles in comparison to pions. The

sample consisted of almost 105 simulated events, each containing 10 muons. Within

each event the muons had the same charge and originated from the same point corre-

sponding to the primary vertex of that event. Positive and negative muons alternated

from one event to the next. The events were simulated a magnetic field with initial

displacements and misaligned geometry (CSC misalignment for the Inner Detector

can be seen in the section 7.2.2. Greater detail is given in[123,124]).

The muon tracks were randomly assigned their pT , η and φ from uniform flat distri-

butions, as seen in figure 7.1, with the following parameter ranges:

• The transverse momentum spectrum range is pT = [2, 50] GeV/c.

• The pseudorapidity range is η = [-2.7, 2.7]

• The azimutal angle range is φ = [0, 2π]

In order to simulate the expected beam spot spread the event primary vertex distribu-

tion was generated from Gaussian distributions centred at zero and with the following

widths (see Figure 7.2):

• transverse plane (vx and vy): σ =
*

2 · 15 µm

• along the beam axis (vz): σ =
*

2 · 56 mm

In figure 7.2 one can see the distributions for each vertex coordinate (top plots) and

the correlations between the coordinates (on the bottom). These plots were obtained

from the numbers that the particle generator produced.

Cosmic Rays

In addition to the sample of simulated muons originating from the primary vertex

cosmic rays were also simulated. The cosmics rays were simulated at the surface then

were propagated through the earth to the ATLAS cavern. To speed up the simulation
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Figure 7.1.: True generated parameters of the multimuon sample.
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Figure 7.2.: True generated vertex of the multimuon sample.

of such events a volume filter was introduced, with the main sample ensured the par-
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ticle traversed the TRT volume. Cosmic events were produced with both the solenoid

magnetic field on and the magnetic field off.

Once the tracks from the comic muons reach the ID they are no longer spatially uni-

form as the probability of Cosmic ray reaching the ATLAS detector will be heavily

increased if the particle passes through access shafts rather the 100 m of earth. In

addition to this the majority of the tracks will be almost perpendicular to the beam

line there are very few tracks that have hits in the end-cap of the Silicon tracker.

7.2.2. Silicon misalignments for CSC

For the CSC exercise misalignments of the Inner Detector were designed to be as re-

alistic as possible. Hence different levels of misalignment were generated in order

to simulate a realistic detector, as close as possible to the real as-built experiment.

The details of the misalignment of the detector can be found in[3,125] but are sum-

marised here.

Three different levels of misalignments were introduced into the Silicon Tracker which

reflected the construction of the detector:

• Level 1 transforms: transformation of each silicon subsystems.

• Level 2 transforms: transformation of detector layers/disks.

• Level 3 transforms: transformation of individual detector modules.

The approximate magnitude of the transforms can be seen in Table 7.1. The exact

deformations for the Level 1 and 2 tranformatios can be found in Appendix D.

7.2.3. The Effect of the Misalignment on Reconstructed Track

Parameters

Such gross misalignments of the detector have a significant effect on the reconstructed

track parameters. Figure 7.3 displays the effects of the misalignments on the recon-

structed track parameters. All of the track parameters are biased to varying degrees

and all have compromised resolutions. The shifts of the detector at Level 2 and 1 are
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Level 1 Transforms

System Translations (mm) Rotations (mrad)

Pixel detector 1.0 0.5

SCT Barrel 1.0 0.5

SCT End-cap 1.0 0.5

Level 2 Transforms

System Translations Rotations

Pixel Barrels/Disks 1.0 1.0

SCT Barrel modules 0.1 0.1

SCT End-cap modules 0.1 0.1

Level 3 Transforms

System Translations Rotations

Pixel Barrel modules 0.03 1.0

Pixel End-cap modules 0.03 1.0

SCT Barrel modules 0.15 1.0

SCT End-cap modules 0.10 1.0

Table 7.1.: Approximate sizes of the silicon displacements at each level

the major cause of the biasing of the reconstructed parameters, and the compromised

resolution is a result of the random movements of the modules at Level 3.

The transverse impact parameters are expected to be consistent with zero as the tracks

originate from (0,0,0), however they exhibit a sinusoidal dependence on the recon-

structed track φ0. This is indicative of the movement of the pixel detector with respect

to the nominal beam position.

Although the total number of reconstructed tracks drops only by 1.8%, the quality

of those tracks is significantly affected. The average number of silicon hits per track

(see Figure 7.4) drops from 11.62 to 8.26. The average number of holes on track

increasing from just 0.05 to 1.36.

In addition, the tracks χ2 per DoF is also affected. The χ2 indicates that the calculated

uncertainty of the measurements is about three times too small as a result of the

detector misalignment. This is a result of the measurement uncertainties not taking

into account misalignments and miscalibrations. To combat this effect and to improve

tracking efficiency the errors of the hits are inflated. This procedure is known as Track
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Error Scaling. This feature is used during the initial stages of the alignment procedure

to help “kick start” the alignment procedure. Details of the error scaling are provided

in[3].
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Figure 7.3.: The effect of the CSC misalignments on the reconstructed track parameters
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Figure 7.4.: The effect of the CSC misalignments on some measures of the track quality.

7.3. Standard CSC Alignment Procedure

The standard alignment procedure for the Silicon Tracker is presented here and is a

reproduction of[3]. It involves running the Global χ2 alignment algorithm iteratively

starting from the misaligned geometry (as defined in Section 7.2.2) using the data

described in Section 7.2.1. Tracks were fit with global χ2 track fitter without any

additional constraints.

For all iterations, tracks with momenta above 10 GeV/c were constrained to be con-

sistent with the beam line, assumed at (0,0) in the x -y plane. This constraint was

applied in the form of a track parameter constraint on the transverse impact parame-

ter d0. This constraint was softened by increasing the error on the d0 constraint and

was set to a value 10 times larger than the error on the transverse impact parameter

(d0) obtained from the track fit.

A number of iterations were required to ensure that the alignment had converged.

The iterations can be divided in three phases:

1. An initial four iterations involving the degrees of freedom (DoF’s) of barrel cylin-

ders and end-cap discs all considered as rigid objects (6 DoF’s per object). This

corresponds to the Level 2 geometry description of the ID (see Section 7.2.2 and

[123,124]).

The solution was obtained by means of diagonalisation with the smallest four

eigenvectors removed for the solution. These were assumed to correspond to

the four near-singular modes of the solution, i.e. the three rotations and the

translation along z of the whole system. Note, that the freedom of the x and

y translations have been removed by the beam line constraint. The iterations
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used 10,000 muon events each (approximately 100,000 muon tracks) with error

scaling turned on.

2. Two iterations involving the entire set of 34,922 DoF’s of the ATLAS silicon

system. Known as Level 3 alignment, the solution was obtained using MA27

direct fast solver [115] (see Section 5.7.2 for further details). Each iteration

used 50,000 multiple muon events leaving each module with at least 500 hits.

The limited statistics of the tracks passing through each module and the solv-

ing method necessitated the need for matrix preconditioning. To control the

statistical error of the solution a constraint on the alignment parameters was in-

troduced. The constraint values were motivated by the CSC misalignments and

are shown in Table 7.2.

Pixel SCT

x ′ error 0.010 mm 0.050 mm

y ′ error 0.010 mm 0.050 mm

z′ error 0.015 mm 0.050 mm

Rx ′ error 0.0003 rad 0.0003 rad

Ry′ error 0.0003 rad 0.0003 rad

Rz′ error 0.0003 rad 0.0003 rad

Table 7.2.: Alignment parameter constraint values used in the CSC alignment exersice

3. Two futher iterations of the Level 2 alignment were performed. The procedure

for these iterations was identical to that of the first four. The purpose of this

last step was two-fold: align any residual distortions that might have been intro-

duced by the Level 3 iterations and confirm the convergence.

This procedure makes no attempt to remove the various types of systematic /χ2-

invariant distortions that could be introduced during the alignment procedure. As

described in Chapter 6, in order to remove some of the χ2-invariant distortions ad-

ditional information provided by the simulated cosmic muons was used. This infor-

mation provided by the cosmic muons allowed for distortions of the type Rz ∝ r and

where Tz ∝ r to be removed from the system (see Figure 7.5). Section 7.5 and 7.6

detail a method for all forms of χ2-invariant distortions.

To incorporate the information obtained from cosmic tracks an additional iteration

was performed at Level 2 combining 10,000 multiple muon events with the simulated
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(a) ∆r ∝ r (b) ∆Rz ∝ r (c) ∆Tz ∝ r

Figure 7.5.: First order systematic distortions of barrel like detector in r, φ and z with respect

to r.

cosmic. The cosmics rays provide tracks with differing coverage to that of collisions

muons. The muons were processed in an identical manner to those in the previous

iterations and cosmic events were processed using the same alignment settings as

the collision event but without the impact parameter constraint. The matrices and

vectors produced by the collision muons and the cosmic muons were then merged

and the final corrections were obtained by diagonalising and solving the combined

system and removing the eigenvector associated to the lowest four eigenvalues. Two

different samples of simulated cosmic rays were tried: without and with the magnetic

field inside the ID. Both gave qualitatively similar results.

7.4. Standard CSC Alignment Results

A number of checks were performed to confirm the stability of the solution, the valid-

ity of the beam line constraint, the suitability of the alignment parameter constraints,

and the quality of the alignment solution. This section describes validation and the

quality of the resulting alignment (see also [3]).

7.4.1. Validity of Beam Line Constraint

To test the validity of the beam line constraint the alignment was performed at Level 2

starting from the nominal alignment with the error parameters of the constraint on

track parameter d0 scaled by varying amounts. The resulting alignment constants

were checked for their ability to reconstruct the beam line correctly. In particular the

dependence of the reconstructed d0 on the track direction in the x -y plane (track
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φ0) was inspected, in addition to the transverse impact parameters resolution. The

φ dependence on the position of the track parameter d0 indicates one of two things

(see Figure 7.3b). Either that all tracks are not originating from the nominal collision

position (0,0,0) or that the detector (in particular the first layer of the pixel detector)

is misaligned.

Figure 7.8 demonstrates that the resolution of d0 is relatively independent of the

strength of the constraint imposed. The resolution is relatively unaffected by scaling

the error on the beam line constraint. As expected a constraint on d0 provides an

effective method of correctly defining the position of the detector relative to the IP.

7.4.2. Validity of Alignment Parameter Constraints

The strength of the alignment parameter constraints were scaled up and down in the

range ×0.01→×1000 in order to verify stability of the Level 3 alignment. A plateau

of workable cut values was identified, as seen in Figures 7.9, 7.10 and 7.11. Conver-

gence was slowed as the constraints were tightened, while systematic deformations

dominated the solution if the constraints were relaxed too much in a similar manner

to that shown in the toy model (see Section 6.4.3).

The greatest concern with these results is that the alignment converges to margin-

ally different solutions depending on the strength of the constraint (evident in the

differing momentum scale biases as seen in Figure 7.9). Converging to the same re-

sult regardless of constraint strength, as would be the case if it converged to the true

global minimum of the problem, would be the best outcome. Given that the alignment

begins from a biased position, and the Level 3 alignment is not expected to correct for

these biases, it would be expected that any bias which could not be addressed during

the alignment at Level 2 would be present after the Level 3 alignment. However the

alignment at Level 3 can reduce and or increase the biases present depending on the

constraints applied to the system. This suggests that χ2-invariant deformations of the

system are introduced during the Level 3 alignment.

7.4.3. Solution Stability

To study the stability of the solution further iterations of both the Level 2 and Level 3

alignment were performed in order to verify the convergence of the method and lack
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of uncontrolled runaway. Figures 7.6 to 7.8 show that the Level 2 alignment has

converged to a stable solution, albeit after six iterations instead of the four that was

selected in the alignment procedure due to time constraints.

Inspection of the change of the alignment parameters over those iterations presents

a slightly different picture, as alignment parameters continue to vary. This could be

due to a number of reasons. Firstly, the modules on the substructures are misaligned

and as a result the track parameters are still poorly defined and hence the alignment

parameters are unable to determined to sufficient accuracy. Secondly, as the mod-

ules that comprise the super structure being aligned are themselves misaligned with

respect to the super structure, the Jacobain describing the movement of the super

structure with respect to the composite module is inaccurate. As such the derivative

matrix that describes the movement of the super structure with respect to the track is

inaccurate, leading to an unreliable calculation of the alignment parameters. Finally,

the super structures could be moving in a χ2-invariant manner which of course would

need to be restricted through some form of constraint. As the first two possibilities

are due to random misalignments it would be expected that the movement would be

random, and the final case corrections would be systematic or would lead to a sys-

tematic solution. No clear evidence was found to suggest that these movements were

systematic.

When aligning all modules individually (Level 3 alignment) there is also the possibil-

ity that the detector will move in a χ2-invariant manner. To combat this constraints

on the alignment parameters were used to subdue these movements (see Figure 7.9 ).

To be noted is the behaviour of the momentum scale when the constraint is relaxed;

it is able to shift significantly (especially in the end-caps) which is an indication that

the detector is moving in a χ2-invariant manner. This emphasises again that the de-

tector needs to have the χ2-invariant modes constrained. Figures 7.11 and 7.10 show

that the system at Level 3 converges after no more than 3 iterations, when using the

standard constraint strength.

7.4.4. Final Solution Performance

A number of figures of merit were used to gauge the quality of the resulting align-

ment. A comparison of reconstructed to generated track parameters was performed.

A test for any remaining global sagitta distortion was of the primary interest. The



142 Alignment of the ATLAS Inner Detector

Iteration
0 1 2 3 4 5 6 7 8 9

)
-1

 (
G

e
V

tr
u
e

T
/d

p
sc

a
le

d
p

-0.4

-0.2

0

0.2

0.4

0.6

0.8
x0.01

x0.1

x1

x10

x100

(a) |η|< 0.8

Iteration
0 1 2 3 4 5 6 7 8 9

)
-1

 (
G

e
V

tr
u
e

T
/d

p
sc

a
le

d
p

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
x0.01

x0.1

x1

x10

x100

(b) |η|> 1.5

Figure 7.6.: The momentum scale in the central barrel, (a), and end-caps, (b), for silicon only

tracks during Level 2 iterations with the collision muon sample. The strength of

the beam spot constraint were scaled by the amounts indicated.

quantity (Q/prec
T )/(Q/p

true
T ), which will be referred to as the momentum scale (pscale),

was plotted in the form of a profile histogram against the signed track transverse mo-

mentum. The slope of this dependence gives direct evidence of a sagitta distortion.

Other methods need to be used to check for such distortions. One such check is

to inspect the charge asymmetry (Nµ+ − Nµ−/Nµ+ + Nµ−) of tracks originating from

mass reassurances that decay into oppositely signed leptons, for example the Z bo-

son. Checking the asymmetry with respect to the track parameters (especially track

momentum and direction) will give an indication of any systematic distortions present

in the detectors alignment.

Inspecting the results of charge asymmetry as a function of track momentum of muons

originating from Z boson decays shows a distinct bias that has not been corrected for

during the alignment process. As it has not been corrected it suggests that it is χ2-

invariant deformation of the detector.

The resolution of the reconstructed transverse momentum after the Level 3 alignment

is significantly worse than the ideal value. For example there is a 75% degradation

for pT = 50 GeV tracks found in the end-caps. This has a significant effect on the

reconstructed mass of the Z boson (see Figure 7.15), degrading the mass resolution

by 50%
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Figure 7.7.: The pT resolution in the central barrel, (a), and end-caps, (b), for silicon only

tracks during Level 2 iterations with the collision muon sample. The strength

of the beam spot constraint was modified by the amounts indicated. The open

triangles show the ideal alignment resolution of the silicon tracker
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Figure 7.8.: The resolution of the transverse impact parameter for silicon only tracks during

Level 2 iterations the collision muon sample. The strength of the beam spot

constraint were scaled by the amounts indicated. The strength of the beam spot

constraint was modified by the amounts indicated.
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Figure 7.9.: The momentum scale in the central barrel, (a), and end-caps, (b), for silicon only

tracks during Level 3 iterations with the collision muon sample. The strength of

the alignment parameter constraint was scaled by the amounts indicated.
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Figure 7.10.: The pT resolution in the central barrel, (a), and end-caps, (b), for silicon only

tracks during Level 3 iterations with the collision muon sample. The strength of

the alignment parameter constraint was scaled by the amounts indicated. The

open triangles show the ideal alignment resolution of the silicon tracker
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Level 3 iterations the collision muon sample. The strength of the alignment
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7.5. Properties of the Alignment system

The standard alignment procedure shown in Section 7.3 made no attempt to remove

χ2-invariant deformations of the detector beyond the use of cosmic ray tracks. As

the final track χ2 was virtually ideal but the track parameter resolution was not it

suggests that the detector was deformed in some form of χ2-invariant manner. To

help with the removal of these χ2-invariant modes they need to be identified. To

find these modes the eigenvalues and eigenvector of the matrices produced via the

Global χ2 Alignment technique were inspected. In this section the properties of the

alignment system at Level 2 and Level 3 are discussed.

As the full detector contains approximately 35000 DoF inspecting the eigenvalues of

the complete system is somewhat difficult. To simplify the investigation into the χ2-

invariant modes of the detector a study of the properties of the Level 2 alignment was

performed followed by a study of the Level 3 alignment on portions of the detector.

7.5.1. Level 2 Properties

Initially the barrel of the detector was investigated as its geometry is similar to that

used in the toy model presented in the previous chapter. It will be shown that the

system exhibits similar properties. Aligning the ATLAS barrel at Level 2 (considering

barrel layers as single entities), results in a system with 7 super structures and hence

42 degrees of freedom. The alignment equations were formed with approximately

50000 simulated tracks constrained to originate from common positions in the x -y

plane.

It would be expected that there would be six clearly unconstrained degrees of freedom

associated to the three translation and three rotations that would normally define the

alignments systems frame of reference. Two of these degrees of freedom have been

removed by constraining the tracks to originate from a common vertex position. As

such the system will not exhibit unconstrained global translation degrees of freedom

in the x and y directions.

The otherwise expected global rotations of all layers around the x and y axes are

no longer global degrees of freedom when aligning the detector at Level 2 with the

magnetic field on. The Inner Detector is enclosed in a magnetic solenoid and as such

particles will travel in a helical path. This helical trajectory will have an axis aligned
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with the magnetic field. A rotation of the whole ID around the x or y axes will cause

the hits on the reconstructed track to rotate accordingly. However by rotating the

detector around either the x and y axes the hits will be moved into a shape that

is no longer helical and as such the global rotations around the x and y axes are

constrained.

The remaining unconstrained degrees of freedom are clearly visible (see Figure 7.17)

and correspond to global rotations around the z axis (eigenvalue 41) and the global

translation in the z direction (eigenvalue 42).

There are another three eigenvalues which are orders of magnitude smaller than the

bulk of the eigenvalues, and upon first inspection they all exhibit the property Ti ∝ r.

Closer inspection reveals that the unconstrained movements in the x and y directions

are in fact proportional to r2 (see Figures 7.18 and 7.19). The parabolic nature of the

χ2-invariant movement in the x -y plane can be attributed to the parabolic like nature

of path of high momentum particles in the bending plane. It would be expected that

such parabolic movements would have three degrees of freedom which would result

in three eigenvector displaying such characteristics. However, one degree of freedom

(the constant shift) has been removed by the constraint on the track parameter d0.

One has been identified as the predominantly linear translation and the final degrees

of freedom is present but well hidden amongst the other eigenvalues which were

two orders of magnitude larger. The fact they are two orders of magnitude larger is

consistent with the size of the residual shown in Figures 7.18b and 7.19b.

Translations in the z direction of movement seem consistent with Tz ∝ r (see Figure

7.20) despite what looks to be independent movement of pixel and SCT detectors.

These residual movements are yet to be fully explained.

When considering the whole Silicon Tracker, additional unconstrained degrees of free-

dom emerge as more structures are being aligned. At Level 2 there are 31 objects to

align and hence 186 degrees of freedom. There are six very small eigenvalues for

the system with no additional constraints applied (see Figure 7.21). These six modes

correspond to global translations in the x and y directions, a global translation in

the z direction, a global rotation around the z axis and movements in the x and y

direction proportional to the z2 (see Figure 7.22). Again, no sign rotational degrees

of freedom are present around the x and y axes.
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Figure 7.16.: The eigenvalues of the barrel region ATLAS Silicon Tracker at Level 2. Note to
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As opposed to the barrel, the parabolic nature of the poorly constrained movements

in the x and y direction is strong and clearly evident in the movements with respect

to the z position of the super structures (see Figure 7.23 and 7.24). Furthermore the

movement of one end-cap is independent of the other.

As the magnitude of the eigenvalues is inversely related to the final error on the

alignment parameters, it would be expected that the translations in the z direction

would be associated to the smallest eigenvalues, as these movements are only very

poorly defined especially in the end-caps. As such the next thirty modes are mainly

associated to movements in the z, direction except for four. Those four eigenvalues

correspond to movements in the x -y plane proportional to r2 and z2. This highlights

again the inability of cutting on the eigenvalues to correctly remove unconstrained

degrees of freedom.

There are also χ2-invariant modes that are related to the z position of the super

structures and the z translations. Naively, it would be expected that the relationship

between these two would be linear, as the track (assuming it is of high enough trans-

verse momentum ) will be linear in the r-z plane. In reality this assumption breaks

down on two fronts; firstly the magnetic field does have significant components in the

radial direction at high |z| (see Figure 3.7), secondly not all tracks have high trans-

verse momentum and as such the track may bend significantly in the magnetic field

so that dθ/dz of the track is not constant. The low transverse momentum tracks are

easy to eliminate while the effect of the magnetic field is a reality of the detector.
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(b) Eigenvector 41: ∆Rz ∝ 1
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(c) Eigenvector 40: ∆Tz ∝ r
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(d) Eigenvector 39: ∆(aTx + bTy) ∝ r2

Alignment Parameter
0 5 10 15 20 25 30 35 40

E
ig

e
n
ve

ct
o
r 

V
a
lu

e

0

0.1

0.2

0.3

0.4

0.5

0.6

(e) Eigenvector 38: ∆(aTx + bTy) ∝ r2

Figure 7.17.: The eigenvectors of the alignment matrix corresponding to the five smallest

eigenvalues from the central barrel ATLAS Silicon Tracker at Level 2. Along the

x axis of each plot are the alignment parameters while the y axis shows magni-

tude of the correction. The first seven parameters correspond to a translations

in the x direction of module 1-7, parameters 8-14 correspond to a translation

in the y direction, parameters 15-21 correspond a translation in z direction, pa-

rameters 22-28 correspond to a rotations around the x -axis, parameters 29-35

correspond the rotations around the y-axis, and parameters 35-42 correspond

a rotation around the z-axis.
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(a) Tx component of the eigenvector fit
with a first order polynomial
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Figure 7.18.: The Tx components of eigenvector 39 of the as a function of module radius.
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(a) Ty component of the eigenvector fit
with a first order polynomial
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Figure 7.19.: The Ty components of eigenvector 38 of the as a function of module radius.
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Figure 7.20.: The Tz components of eigenvector 40 of the as a function of module radius.
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When applying a linear fit to the systematic movement of the super structure in the

z direction with respect to the z position of the structure (see Figure 7.25), the fit

is reasonable when excluding the outer most disk. This further suggests that these

effects seen are due to the changes in the magnetic field given that last SCT disk is

surrounded by a rather weak and non axial magnetic field.

For the full ATLAS silicon tracker nineteen poorly constrained modes or χ2-invariant

degrees of freedom were identified. To constrain these modes required that the fol-

lowing movements are constrained:

• Global translations of the detector

∑

Module

Ti = 0 where i = x , y, z

• Global rotations around the z axis

∑

Module

Rz = 0

• Shearing of the modules with respect to the module radius

∑

Module

Ti · rModule = 0 where rModule ̸= 0 and i = x , y, z

∑

Module

Ti · r2
Module

= 0 where rModule ̸= 0 and i = x , y

• Shearing of the modules with respect to the module z position

∑

Module

Ti · zModule = 0 where zModule > 0 and i = x , y, z

∑

Module

Ti · zModule = 0 where zModule < 0 and i = x , y, z

∑

Module

Ti · z2
Module = 0 where zModule > 0 and i = x , y
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∑

Module

Ti · z2
Module

= 0 where zModule < 0 and i = x , y

To further stabilise the ends caps a very loose constraint on the z position - (1mm)

can be imposed to constrain those movements.
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Figure 7.21.: The eigenvalues of the ATLAS Silicon Tracker at Level 2. Note to aid the visual-

isation, eigenvalues below 10−1 have been set to 10−1

7.5.2. Level 3 Properties

To study the χ2-invariant modes that are present when aligning the individual mod-

ules, the system was broken into sections in order to make it more computationally

manageable. To study the barrel, a half cone geometry was constructed. The half

cone geometry consists of every module between η= 0 and η= 0.8. This system has

1030 silicon modules within it and as such has 6180 degrees of freedom. To study the

end-caps, modules with η > 1.6 were selected providing a system with 712 modules

or 4272 degrees of freedom.

The tracks in both cases were required to have at least two hits in the pixel detector

and five hits in the SCT detector. In addition to this the tracks were constrained in the

transverse plane to the beams spot via a track parameter constraint on the transverse

impact parameter.
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Barrel - Half Cone

The unconstrained global degrees of freedom that are present during the Level 2

alignment are still present at Level 3, however they manifest themselves in a slightly

different manner. The global rotation around the z axis and translation in z are clearly

displayed in the eigenvectors associated to the smallest eigenvalues (see Figure 7.26)

as they are at Level 2.

The other movements identified at Level 2 are now φ dependent (shown in Figures

7.28 to 7.33). The φ dependent nature is quite simple to explain. The invariant

movements identified at Level 2 still apply to the whole detector. However, now

there is no need for the movements to occur uniformly to the whole detector as the

movements of the individual modules on a particular layer are not strongly correlated.

Adjacent modules will be relatively well correlated (due to the overlap between them)

but beyond that the correlations are quite small.

The φ dependant nature of the χ2-invariant modes manifest themselves as harmonics

of the detector (see Figures 7.28 to 7.33). Examination of the eigenvectors shows that

there are four clearly distinguishable harmonics of the movements in the x -y plane

across all layers of the ID. In total six modes are present but the last two are not as

clean as the previous four. The number of harmonics is most likely related to the

number of modules present and the amount of overlap between the modules. This

suggests that a high degree of overlap between the modules will reduce number of

harmonics. In addition to the modes in the x -y plane there are also modes in the z

plane although they are less prevalent.

Additional poorly constrained degrees of freedom are introduced into the system that

are not present at Level 2. Rotations around the x and y axes are possible (see Figure

7.27). These rotations were not allowed at level 2 as they would not leave the track

helical and as such are not χ2-invariant. However it appears that movements of the

individual modules can allow for the rotation with a minimal impact on the χ2. This

is most likely due to the linearisation of the alignment problem.

In addition to these rotations a radial expansion of the detector becomes an uncon-

strained movement of the detector, despite the fact that these movements should be

constrained by the inter module overlap. These movements are characterised by the

position of the module x⃗ transforming to a · x⃗ where a is a constant proportional to

the magnitude of the position vector x⃗ .
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Another point of interest is that these modes lead to no net movement of the detector

on a layer per layer or disk by disk basis. As such constraining the modules to the

super structures that they are built on by ensuring that modules movements sum to

zero would be clearly ineffective in this particular case.

End-cap - η > 1.5

Inspecting the eigenvectors from the end-cap system reveals a similar story. Again a

global translation in the z direction and global rotation around the z axis are present

as the first two χ2-invariant modes of the detector (Figure 7.34).

The next modes exhibit a φ dependence but as opposed to the barrel situation the

movements are predominately in the z direction (see Figure 7.35). In the case of the

end-caps, movements in the z direction are poorly defined when compared to x and

y directions, as they are not directly related to the measurement residual. As such the

lower order modes are expected to be dominated by movements in the z direction.

The amount of information available for the alignment also differs significantly in

both cases. In the barrel case each module had between 5000 and 1000 hits while in

the end-cap case the modules have anywhere between 1000 and 50 hits, and as such

alignment corrections can be quite poorly defined due to the lack of statistics. This,

combined with greater distance the track has to be extrapolated between measure-

ment planes, does increase the uncertainty on the residuals and as a result, on the

alignment parameters.

Difference between the barrel and the end-cap harmonics is that the barrel harmonics

were propagated through all layers (see Figure 7.36). This suggests that in the end-

cap case the modules at either end of the detector are not very correlated to each

other.

In summary, the study of the modes at Level 3 showed that the same movement

allowed at Level 2 are still present at Level 3. However to constrain them completely

the detector cannot be treated as a whole and would need to be broken into sectors.
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(a) Eigenvector 186: ∆Tz ∝ 1
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(b) Eigenvector 185: ∆Rz ∝ 1
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(c) Eigenvector 184: ∆(aTx +
bTy )∝ 1
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(d) Eigenvector 183: ∆(aTx +
bTy )∝ 1
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(e) Eigenvector 182: ∆(aTx +
bTy) ∝ z2
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(f) Eigenvector 181: ∆(aTx +
bTy )∝ z2
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(g) Eigenvector 180: ∆Tz ∝ z2
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(h) Eigenvector 179: ∆Tz ∝ z2

Figure 7.22.: The eigenvectors of the alignment matrix corresponding to the six smallest

eigenvalues from the unconstrained ATLAS Inner Detector at Level 2. Along

the x axis of each plot are the alignment parameters while the y axis shows

magnitude of the correction. The first thirty one parameters correspond to a

translations in the x direction of super structure 1-31, parameters 12-62 corre-

spond to a translation in the y direction, parameters 63-93 correspond a trans-

lation in z direction, parameters 94-124 correspond to a rotations around the

x -axis, parameters 125-155 correspond the rotations around the y-axis, and

parameters 156-186 correspond a rotation around the z-axis.
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Figure 7.23.: The Tx components of the 182th mode the full Silicon Tracker at Level 2.
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Figure 7.24.: The Ty components of the 182th mode the full Silicon Tracker at Level 2.
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Figure 7.25.: The Tz components of the 180th mode the full Silicon Tracker at Level 2.
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Figure 7.26.: Movements represented by the first two χ2-invariant modes of the barrel system

Figure 7.27.: A three dimensional representation of the seventh mode of the central barrel

cone. The mode seems to exhibit rotation around the y axis.
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Figure 7.28.: The first harmonic of the movement aTx + bTy ∝ r in the barrel.
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Figure 7.29.: The second harmonic of the movement aTx + bTy ∝ r in the barrel.

x (mm)
-600 -400 -200 0 200 400 600

y 
(m

m
)

-600

-400

-200

0

200

400

600

(a)

r (mm)
0 100 200 300 400 500 600 700

 (
ra

d
)

φ

-4

-3

-2

-1

0

1

2

3

4

(b)

r (mm)
100 200 300 400 500

r|
 (

A
rb

itr
a
ry

 U
n
its

)
∆|

0

10

20

30

40

50

60

70

(c)

Figure 7.30.: The third harmonic of the movement aTx + bTy ∝ r in the barrel.
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Figure 7.31.: The forth harmonic of the movement aTx + bTy ∝ r in the barrel.

x (mm)
-600 -400 -200 0 200 400 600

y 
(m

m
)

-600

-400

-200

0

200

400

600

(a)

r (mm)
0 100 200 300 400 500 600 700

 (
ra

d
)

φ

-4

-3

-2

-1

0

1

2

3

4

(b)

r (mm)
100 200 300 400 500

r|
 (

A
rb

itr
a
ry

 U
n
its

)
∆|

0

10

20

30

40

50

60

70

80

(c)

Figure 7.32.: The fifth harmonic of the movement aTx + bTy ∝ r in the barrel.
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Figure 7.33.: The sixth harmonic of the movement aTx + bTy ∝ r in the barrel.
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Figure 7.34.: The first modes of the end-cap system at Level 3
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(d) Forth Harmonic

Figure 7.35.: The first four harmonics of the corrections in the end-caps
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Figure 7.36.: The seventh mode of the Level 3 alignment of the end-caps displaying a η
dependence on the movements

7.6. Modification of Standard Alignment Procedure

As was mentioned the standard CSC alignment procedure (Section 7.3) is not fail safe,

as some χ2-invariant modes are not constrained. A safer recipe consists of explicit

elimination of the χ2-invariant modes identified in the previous section. The use

of Lagrange Multipliers to explicitly eliminate the unconstrained movements of the

detector was shown to be an effective method of constraining the χ2- invariant modes

of the toy model (see Section 6.4.1) and was applied to the alignment of the full

ATLAS detector system.

In this section a discussion of how to apply the constraint through the use of Lagrange

Multipliers on the ATLAS detector is presented. This is followed by results of applying

the constraints to the Level 2 and Level 3 alignment of the ATLAS detector.

7.6.1. Implementation of Lagrange Multiplier Constraints

To apply Lagrange multiplier constraints, a knowledge of rate change of the alignment

parameters with respect to each of the detector movements that are to be constrained
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is required .

dQ

dα
, (7.1)

must be calculated for each constraint, Q. In most cases this is best achieved numer-

ically. The movement associated with the constraint, for each module, can be repre-

sented by the transformation 5Q in the reference frame of the module. As the trans-

formation is actually a function of the alignment parameters (Tx , Ty , Tz, Rx , Ry , Rz),

and assuming that the magnitude of the transformation is infinitesimally small (i.e.

|5Q| = ε) the derivatives of the alignment parameters of the module can be repre-

sented by the transformation 5Q given by

dQ

dα
≈ (Tx/ε, Ty/ε, Tz/ε, Rx/ε, Ry/ε, Rz/ε). (7.2)

As the application of the constraints requires knowledge of the relationship between

the effect of certain global movements on the position of the module, application of

the constraints at Level 2 is very simple, as every super module’s position is defined in

the global frame. At Level 3 more work needs to be done as the modules are defined in

their local reference frame and the invariant movements are all defined with respect

to the global frame.

The transformation from the local frame into global is defined to be 5G and the move-

ment in the global frame is given by 5M . Therefore the transformation that defines

the global movement in the local frame is

5Q = 5 −1
G
5M5G. (7.3)

When aligning the individual modules of the detector (Level 3 alignment) the χ2-

invariant modes of the detector present themselves as φ dependent harmonics (as

discussed in Section 7.5.2). In order to constrain the movements of the modules well

the detector is divided into twelve equal φ sectors. Within each sector the following

constraints were applied:

• Shear of the modules with respect to the module radius

∑

Module

Ti · rModule = 0 where i = x , y, z
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∑

Module

Ti · r2
Module

= 0 where i = x , y

• Shearing of the modules with respect to the module z position

∑

Module

Ti · zModule = 0 where zModule > 0 and i = x , y, z

∑

Module

Ti · zModule = 0 where zModule < 0 and i = x , y, z

∑

Module

Ti · z2
Module = 0 where zModule > 0 and i = x , y

∑

Module

Ti · z2
Module

= 0 where zModule < 0 and i = x , y

• Radial expansion of the modules

∑

Module

T · | x⃗ |= 0 where x⃗ is the position of the module

These in combination with the six constraints that define the frame of reference re-

quire a total of 198 constraints. It could be foreseen that these constraints will need

to be further segmented in η, however at this stage it is not required.

7.6.2. Level 2 Alignment

Applying constraints to a perfectly aligned system enables the study of their effec-

tiveness in stabilising the system. The results of aligning the perfect system should

ideally return zero for all parameters (within statistical accuracy) hence any statis-

tically significant change of the alignment parameters should be the result of poorly

constrained χ2-invariant modes. Aligning the system using the constraints described

in Section 7.5 resulted in a relatively stable system except for the parameters relating

to rotations around the z axis.
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On closer inspection the parameters exhibited a strong dependence on the radius and

z position of the modules. Figures 7.37a and 7.38a show the Rz corrections as a

function of r and z respectively (the movements with respect to z direction are in-

dependent in each end-cap). The rotations of the modules with respect to the radius

exhibits a Rz ∝ 1/r like behavior. To understand what this means for the measure-

ments, assume that that the point (r, 0, 0) is rotated around the z axis as such

Rz(ϕ/r)→ x ≈ r, y ≈ ϕ.

To first order approximation this is a constant translation of the measurement in the

rφ direction. However, given the cylindrical nature of the detector it cannot be ex-

pected to be truly a χ2-invariant movement and as such is corrected for in the next

iteration (see figure 7.37b ).

Similarly the z dependence of the rotation is of the form Rz ∝ z. Again to understand

the effect of this rotation on the measurements consider the point (r, 0, z)

Rz(zϕ)→ x ≈ r, y ≈ rzϕ.

Which again is not a truly χ2-invariant movement as such is corrected for in the next

iteration (see Figure 7.38b).

As these modes are only pseudo χ2-invariant modes the question must be asked how

did they arise? A possible answer is that they emerge because of the linearisation

of the problem. A number of assumptions are made during the formation of the χ2

minimisation the biggest is that problem is linear. The linearisation may over simplify

the problem and miss nuances.

The identification of the pseudo χ2-invariant modes is, in general, rather simple as

after the movement is introduced it will be corrected for in subsequent iterations.The

only real concern of these modes is the random nature of the magnitude of these

pseudo χ2-invariant deformations. An understanding of the cause of which is yet to

be completely determined. It may be that the other constraints somehow force these

rotations of the detector however no further evidence can be found to support this

hypothesis.

These psuedo χ2-invariant deformations not only effect the principle movement but

they also effect the accuracy of other alignment parameters (see Figure 7.39) which
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Figure 7.37.: The Rz corrections, at Level 2, of the perfect aligned system.
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Figure 7.38.: The Rz corrections, at Level 2, of the perfect aligned system.

is expected to a certain extent. By adding an additional three constraints

∑

Module

Rz/rModule = 0

∑

Module

Rz · zModule = 0 where zModule > 0

∑

Module

Rz · zModule = 0 where zModule < 0

to the original nineteen it is possible to compare the effect that the additional con-

straints have on the other parameters.



166 Alignment of the ATLAS Inner Detector

Iteration

2 4 6 8 10 12

m
)

µ
 (

x
R

M
S

 T

0

0.1

0.2

0.3

0.4

0.5
With Additional Constraints

Without Additional Constraints

(a) Tx

Iteration

2 4 6 8 10 12

 (
m

ra
d

)
z

R
M

S
 R

0

2

4

6

8

10

12 With Additional Constraints

Without Additional Constraints

(b) Rz

Figure 7.39.: The RMS of the Tx and Rz corrections, at Level 2, of the perfect aligned sys-

tem across a number of iterations using Lagrange multipliers to constrains the

system.

Figure 7.40 shows the effect of the 22 constraints on the results of the alignment

on a perfect detector over a number of iterations in comparison to the standard CSC

alignment procedure.

The first thing to note is that, as expected, the average movement of the super struc-

tures at Level 2 is consistent with zero for the all movements when Lagrange multi-

pliers are used. This shows that the constraints behaved as designed and ensure that

the detector does not deviate from its mean starting position. This also shows that

the RMS of the corrections after the second iteration are effectively zero for the con-

strained system, while for the standard alignment procedure the modules continue to

display significant fluctuations.

Although Lagrange multipliers are an effective way to constrain the alignment of

the detector caution is required when using them in conjunction with other tech-

niques. Incorrect application can lead to the alignment parameters being totally com-

promised. For example, a φ dependence on the momentum can be introduced if the

full suite of constraints are applied to the detector at Level 2 in conjunction with an

impact parameter constraint if the detector is displaced from its ideal position. The

impact parameter constraint has the effect of trying to move the pixel layers in a cer-

tain manner while the Lagrange multipliers fix the detector into a certain shape. As

the pixel detector needs to move a large distance (∼ 2 mm) to correct for CSC mis-

alignment, this imparts a large φ dependence on the reconstructed momentum ( see

Figure 7.41 ).
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Figure 7.40.: The effectiveness of the Lagrange multipliers at stabilising the alignment of the

Silicon Tracker at Level 2.

What Constraints Should be Used on a Misaligned System?

There is a minimum number of constraints required to ensure that the system it not

singular. As was shown from the properties of the toy model there are six eigenvalues

which are approximately zero. To eliminate these six singular modes, a frame of ref-

erence must be defined, for example through the use of Lagrange multipliers or with

a combination of track parameter constraints. If there is a need for the whole detector

to move globally to accommodate another constraint of the system (e.g. a common

vertex constraint), careful consideration is needed when considering the impact of

the other alignment parameter constraints. As such only five constraints were ap-

plied to the system; a track parameter constraint on the impact parameter, Lagrange

multiplier constraints on global translation z, and finally constraints on global rota-

tions around the three axes. These constraints define the frame of reference for the
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Figure 7.41.: φ dependence of the reconstructed momentum introduced by a combination of

track parameter constraints and Lagrange Multiplier constraints.

alignment system. Defining the frame of reference should be considered a minimum

requirement for an alignment problem.

The convergence of the alignment takes significantly longer to obtain a suitably stable

solution than what was shown in the CSC exercise. Using 20,000 muon events twelve

iterations were performed at Level 2 before end-cap disks of the SCT reached a some-

what stable solution. The outer most end-caps, having the least hits, take a long time

to converge to a reasonable solution. Figure 7.42 shows the improvement of the track

quality and track finding ability of during Level 2 alignment iterations. The average

number of tracks per event, hits per track and holes per track approach their ideal,

but do not quite reach them. The individual modules misalignments, which have

not been taken into account, do not allow the track finding to perform optimally. A

clearer effect of the Level 3 misalignments is the average value of the χ2/DoF of a

track, which is still approximately three times larger than its desired value.

This method of aligning the Level 2, like the CSC method, makes no effort to constrain

any possible χ2-invariant modes. As it is unknown if any undetectable deformations

are present it was decided that there was no need to stop them from being introduced

as they will need to be corrected for at a later date.
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Figure 7.42.: The improvement of the track quality during L2 alignment of the misaligned

detector. The last eight iterations using information from the TRT to remove

certain systematic distortions

7.6.3. Removal of χ2 Invariant Distortions

After the Level 2 alignment a significant momentum scale bias is present. As the

alignment system has converged there it would be safe to assume that the detector

is now aligned but deformed in a χ2-invariant manner. The standard information

obtained from collision data is going to be unable to eradicate this bias hence the

need for additional information. In the CSC exercise, simulated collision data was

combined with track from cosmic rays. These tracks link the upper and lower half

of the detector allowing for some radially dependent movement to be constrained.

As tracks only are reconstructed in the barrel of the detector they will have a limited

ability in removing the χ2-invariant modes in the end-caps.

An alternative technique in trying to remove the χ2-invariant modes is to place a

momentum constraint of the reconstructed tracks within the alignment procedure.
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Almost all of the χ2-invariant modes will have an effect on the reconstructed mo-

mentum and as such constraining the track to its correct value should correct the

alignment of the detector.

The information required for such a constraint can be obtained from the TRT. Starting

from a perfectly aligned TRT, tracks extended from the silicon tracker into the TRT

are combined to provide a track using all hit information. The track is then split into

two parts one containing only hits from the TRT, the other only containing hits from

the silicon detectors. The TRT portion of the track is then refitted using constraints on

the tracks θ , z0 and d0 extracted from the full track fit. The track parameters θ and z0

are constrained as in the barrel of the detector the TRT alone is unable to determine

them to any reasonable accuracy. The track parameter d0 is also constrained but

to an error 25 times larger than the uncertainty of the original track fit to reduce the

effects of any biases. This constraint significantly improves the resolution and reduces

the uncertainty on the reconstructed momentum thus increasing the strength of the

constraint (see Figure 7.43).

The silicon portion of the track is then refitted using a constraint on the track pa-

rameter d0, φ0 and Q/p extracted from the TRT only measurement. It is this silicon

only track that is used for the alignment of the detector and in addition to this the

information from the TRT only track is propagated into the alignment to allow for a

track parameter constraint.

Despite the fact that the TRT’s standalone momentum resolution is not as good as

the standalone Silicon Tracker (see Figure 7.43), the system is able to correct for the

momentum bias present given enough tracks. Additionally the TRT does not cover

the whole Inner Detector. As such a mixture of tracks that contain the TRT constraint

and tracks that don’t were used to align the detector. Figure 7.44 illustrates the

improvement in momentum scale bias in central barrel and the end-caps for silicon

only tracks after the application of constraints on the tracks φ0 and Q/pT derived from

the TRT to the alignment procedure for eight iterations of the alignment procedure.

This form of constraint has its dangers, as any bias in the measured quantities from the

TRT will be propagated to the Silicon Tracker. Given that the χ2-invariant modes of

the TRT will be similar to those of the Silicon Tracker it would be possible to correct

for the modes introduced in the Silicon Tracker. A safer way to use a momentum

constraint would be to use high momentum muon tracks as measured in the muon

spectrometer. As the magnetic field in the muon detector is entirely different to that
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Figure 7.43.: The momentum resolution of the TRT only tracks used to constrain the align-

ment of the silicon tracker. The effect of increasing the uncertainty of the trans-

verse impact parameter is shown.

in the ID, the geometrical nature of the χ2-invariant modes in the muon spectrometer

should also be different. As such, aligning the detector with constraints derived form

the muon spectrometer should ensure that the detector is free from systematic biases

that cannot be removed by the alignment procedure. This is yet to be tested, and the

results using the TRT to extract a momentum constraint act as proof of the momentum

constraint principle. Also the Muon spectrometer has better momentum resolution

than the Inner Detector, and as such the constraints applied should be much more

stringent than those of the TRT.

It should be pointed out that constraints aimed at restricting the χ2-invariant move-

ments present should be removed, as these will hamper the efforts of trying to correct

for any χ2-invariant distortion of the detector.

The question may be asked of the point of constraining the system if the χ2-invariant

modes can be removed at a later date. Imparting constraints improves the conver-

gence of the system as the system has fewer degrees of freedom as was shown with

the toy model. However the gross misalignment of the detector does not allow for the

detector to move freely enough if constrained from the start. Additionally it may take

a significant effort to obtain an unbiased system and as such it would nice to have

the assurance that the system will contain the same systematic biases before and after

alignment.

The TRT constraint alone will not and can not remove all χ2-invariant modes as the

TRT does not provide any information about the track parameters z0 and θ . This

means that modes involving the translations in the global z direction cannot be cor-
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Figure 7.44.: The reduction in the momentum bias and after the application of the TRT con-

straint.

rected, for example Tz ∝ z. Movements of this kind will significantly bias the re-

constructed θ and hence the momentum of the track. To correct these modes more

information is required. Cosmic rays link the lower and upper half detector meaning

that any radially dependant shift of the detector modules can be removed including z

translations. As the cosmic tracks do not illuminate the full detector a mix of cosmic

tracks with collision tracks was used during the alignment.

To highlight the effects of using cosmic rays the results of aligning the detector at Level

2 including the additional information obtained from cosmic ray tracks was performed

for three iterations. The results can be seen in Figure 7.45. The reconstructed θ had a

distinct asymmetry prior to alignment with cosmic ray which is removed. Also rather

fortuitously the track parameter z0 becomes less biased. This is the result of the pixel

detector moving the most to correct for the misalignments (see Figure 7.46).

7.6.4. Level 3 Alignment

The alignment at Level 3 proved successful during the CSC alignment procedure. The

only possible issue was the lack of constraints on the χ2-invariant modes. Although it

was not determined if any deformations were introduced during the CSC alignment

procedure it is clear that such deformations are possible and are detrimental to the

overall performance of the ATLAS detector.

To ensure that these deformations do not enter the solution of the alignment param-

eter, the detector was constrained using the constraints described in Section 7.6.1.
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Figure 7.45.: Difference between the reconstructed track parameter resolution before and

after the use if cosmic tracks in the alignment
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Figure 7.46.: The difference between the alignment constants,for the barrel only, before and

after the application cosmic tracks to help align the detector. The arrows in-

dicate the magnitude and direction of the corrections. (The magnitude of the

differences has been increased by a factor of 250 to aid visualisation)

After three iterations the alignment looked to have converged yielding a much bet-

ter resolution on all of the track parameters especially the momentum (see Figure

7.47). In addition, measures of the track quality and track finding quality (Figure

7.48) obtain their ideal values.

Two further iterations at Level 2 were performed using cosmic tracks and constraints

derived from the TRT. This effectively removes all of the remaining biases from the

detector besides a ≈ 100 µm shift of the detector in the global z direction (see Figure

7.50).
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Figure 7.47.: Reconstructed momentum bias and resolution after application of Level 3 align-

ments

The effectiveness of the tracking (Figure 7.48) is identical to that of the perfectly

aligned detector. The general track quality is also identical to that of the perfectly

aligned detector, needless to say that track hit residuals are virtually perfect.

The resolution of the reconstructed track parameters is only compromised marginally

(maximum of less than 3%) and only the longitudinal impact parameter is biased.

Further statistics would be expected to improve the Level 3 alignment allowing the

detector to reach the ultimate precision.

Close inspection of the reconstructed momentum suggests that some form of system-

atic bias was introduced in the end-caps (0.3% at pT = 50 GeV)(see Figure 7.49). At

this stage it is unknown if this bias was introduced during level 3 alignment or if it

can not be removed at Level 3 using the information that has been used. This is a

major improvement over the standard alignment procedure.
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Figure 7.48.: Track quality of the aligned detector.
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Figure 7.49.: Reconstructed momentum bias and resolution of the aligned detector.

7.7. Outlook

The alignment of the CSC geometry showed that the Global χ2 alignment algorithm

is functioning properly and is able to recover a nearly perfectly aligned detector. A

method for controlling the systematic distortions which degrade the track parameter

resolutions has been shown to work effectively at removing χ2-invariant distortions.
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Figure 7.50.: Track parameter resolution of the aligned detector.

Further studies are required to investigate the effects of the simplifications made in

the study presented. Firstly these studies used what is a rather idealistic data set, that

being a pure set of muons. Without the effects of pileup and the underlying events

on the track reconstruction and identification procedure the number of misallocated

hits is kept to an absolute minimum. Tests of the alignment procedure have been

performed during the ATLAS Full Dress Rehearsals (FDR’s). The FDR’s were intended
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to test the performance of the ATLAS software in collision like events. In these tests

a variety of events were simulated and pass through the full ATLAS reconstruction

chain[93].

To test the alignment procedures simulated dijet events were were passed through a

trigger algorithm which selected high momentum tracks (pT > 5 GeV). This recovered

about - (106) tracks. Using a mildly modified version of the CSC alignment procedure

the results obtained were eventually qualitatively quite similar to that of the CSC

procedure [93]. This suggests that the results of this study are directly applicable to

the real world case.

Secondly this study shows that the procedure does not introduce any systematic de-

formation at the individual module level. The effects of systematic deformations at

Level 3 has been investigated to some extent in [120]. Mainly focusing on a curl mis-

alignment of the detector (∆φ = c1 r+ c2/r), which is equivalent to Rz ∝ r, the study

showed this misalignment will have significant effects on the physics performance of

the detector.

The extension to the alignment process described utilised the knowledge that the de-

tector was unbiased at the individual module level (Level 3) and any systematic biases

could only be introduced at Level 2. This is clearly a simplification of the problem,

however the technique described for removing χ2-invariant distortions would work

at any alignment level. Despite this I would be apprehensive about applying track

parameter constraints at individual module level unless the detector from which the

track parameter constraints are derived from is very well understood.

Prior to the LHC operation the alignment activities focus on information from cosmic

ray tracks alone. The cosmic ray tracks present their own problems as they will not

illuminate the detector uniformly and will have there own χ2-invariant transforma-

tions. Much progress has been made with alignment of the detector however recent

comparisons between the ATLAS detector constants produced by the local and global

χ2 indicate do exhibit what appears to be a χ2-invariant distortions of the one of the

two sets of constants.





8
CHAPTER

ELECTRON BREMSSTRAHLUNG

IDENTIFICATION AND ESTIMATION

In Section 4.3 the properties of a helical track model were discussed. It was noted that

material interactions (energy loss and scattering) perturb a particle from its “ideal”

path and these interactions must be taken into account if one wishes to have a prop-

erly estimated trajectory. To be able to account for the material interactions they must

be incorporated into the model. Radiative energy losses are an ever-present problem

for the reconstruction of electrons at ATLAS due material within the Inner Detector

and the high energy of the electrons.

In Section 8.1 the reconstruction of electrons is briefly discussed. The impact of

bremsstrahlung on electron and track reconstruction is explored in Section 8.2, and

a method of incorporating the position of the electromagnetic clusters, to improve

track reconstruction, into track fitting (“CaloBrem”) is presented in Section 8.3. The

tracking properties of the calorimeter are discussed in Section 8.4, with solution tech-

niques, and performance of CaloBrem outlined in sections F and 8.6 respectively.
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8.1. Electron Reconstruction in ATLAS

The reconstruction of electrons and photons is performed within the same algorithm

in the ATLAS software due to their common use of electromagnetic clusters as a “seed”

for the reconstruction[27]. The sliding window algorithm[126] is used to find and

reconstruct electromagnetic clusters forming rectangular clusters with a fixed size,

positioned to maximise the amount of energy within the cluster.

The optimal cluster size depends on the particle type being reconstructed and the

region of the calorimeter in which the cluster is being reconstructed. For example,

electrons need larger clusters than photons due to their greater interaction probability

in the upstream material, and also because they bend in the magnetic field, radiating

soft photons along a range in angle φ. Multiple of collections of clusters are therefore

built by the reconstruction software, corresponding to different window sizes. These

clusters are the starting point for the identification of electron and photon candidates.

For each of the reconstructed clusters, a search is made for tracks, that when extrap-

olated to the calorimeter, match the cluster within a ∆η×∆φ window of 0.05 rad

× 0.10 rad with momentum, p, compatible with the cluster energy, E (E/p < 10). If

one or more matching tracks is found, the reconstruction checks for the presence of

an associated photon conversion. An electron candidate is created if a matched track

is found and no conversion is flagged. Otherwise, the candidate is classified as a pho-

ton. The reconstruction procedure allows for multiple tracks to be associated to the

clusters, to maximise electron reconstruction efficiency. Any electromagnetic cluster

with an associated track is classified as an electron. As a result, reconstructed elec-

trons may be converted photons. Furthermore QCD jets may also be reconstructed as

electrons.

The classification of electrons and photons allows for the application of different cor-

rections to electron and photon candidates. Furthermore it is the starting point for a

more refined identification based largely on shower shapes[27].

8.1.1. Standard Electromagetic Cluster Reconstruction

The sliding window algorithm[126] is used to find and reconstruct fixed-size rectan-

gular electromagnetic clusters which are positioned to maximise the amount of energy

within the cluster. The energy and position reconstruction is an involved process re-
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quiring a number of corrections which take into account factors such as the accordion

geometry of the electromagnetic calorimeter and the origin of the particle. The prop-

erties of the ECAL and their effects on reconstruction is extensively documented in

[27] and is briefly summarised here.

The amount of absorber material crossed by incident particles varies as a function

of φ due to the ECAL’s accordion geometry. If uncorrected this would produce a φ

modulation of the reconstructed energy. If the electromagnetic shower is not fully

contained in the η window chosen for the clusters, a modulation in the energy and

a bias in the measured position will be observed which is dependent on the particle

impact point within a cell. After the energies of the cells are corrected the energy

deposited in the cells of each individual layer of a cluster are summed, and an energy-

weighted cluster position is calculated for each layer. The φ position of the cluster is

calculated solely from the energy weighted average in the second sampling layer of

the calorimeter, while the η position is calculated using all layers.

8.2. The Impact of Bremsstrahlung on Electron

Reconstruction

In the following section the effects of bremsstrahlung on electron reconstruction are

described.

8.2.1. Bremsstrahlung Classification

To highlight the effects of bremsstrahlung, electrons will be classified into three sep-

arate categories: A Hard bremsstrahlung electron classification is designated as an

electron which looses more than 20% of its energy in a single interaction prior to the

electron reaching a radius of 300 mm. Low bremsstrahlung electrons are electrons

that lose less than 20% of its energy before reaching a radius of 600 mm. Finally

medium bremsstrahlung events are those that are neither hard or soft.

The fraction of electrons within each classification group is constant with energy, as

the fractional energy loss due to bremsstrahlung is almost independent of energy.

However, the electron reconstruction efficiency does depend on the electron energy
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(Figure 8.4) and the amount of energy lost, and as a result the fraction of electrons

within each classification will vary (see figure 8.1).
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Figure 8.1.: Fraction of reconstructed electrons within each bremsstrahlung classification

In an attempt to emphasise the effect of bremsstrahlung, an effective mean (M(x))

and width (R(x)) have been defined in terms of the minimum half-width enclosing

a fraction, x , of all events. Values of R(68%) and R(95%) have been determined for

various reconstructed parameters and correspond to ±1σ and ±2σ coverage respec-

tively. The value of R(68%) quantifies the width of the core of the distribution, while

the R(95%) interval is determined by the size of the bremsstrahlung tail.

A “Crystal Ball function” is a probability density function commonly used to model

“lossy” processes and consists of a Gaussian core portion and a power-law low-end

tail.
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⎨

⎩
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where x̄ is the mean of the Gaussian core, σ is the width of the Gaussian core, −α is
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8.2.2. Bremsstrahlung Location

The distribution and amount of material within the Inner Detector determines the lo-

cation and magnitude of the electrons bremsstrahlung. Figure 8.2 shows the average

energy loss as a function of radius along two different planes through the detector.

The electrons traversing the low material region (η = 0.5) have an average energy

loss of about 15% prior to the first layer of the SCT and 30% prior to the TRT. Through

the high material region (η = 1.5) the average amount of energy lost prior to the

first layer of the SCT is 25% and 50% prior to the TRT. Figure 8.3 displays the true

positions of bremsstrahlung vertices within the Inner Detector clearly depicting the

structures within the Inner Detector.
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Figure 8.2.: Average energy loss of electrons as a function of radius with in the Inner Detector

generated from a sample of single electrons with an initial transverse energy of

25 GeV

8.2.3. Impact on Cluster Reconstruction

Calorimeters estimate the energy of electrons and photons by inducing electromag-

netic showers via bremsstrahlung and pair production, within the detector. If bremss-

trahlung occurs prior to the active calorimeter material, the calorimeter may interpret

this early showing as a lower energy electron. The cluster reconstruction tries to take

into account the effects of the material located in front of the calorimeter, however

their performance is degraded by this material.

Cluster reconstruction efficiency is very dependent upon the density and amount of

energy deposited within the calorimeter. As electromagnetic clusters are attempted to
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(a) x-y plane |η|< 0.8 (b) z-r plane

Figure 8.3.: The true positions of bremsstrahlung vertices in the Inner Detector. The plots
were generated from 50,000 simulated single electrons with an initial transverse
energy of 25 GeV

be recostructed below a raw deposited transverse energies of 2.5 GeV, low momentum
electrons that lose a large fraction of their energy through bremsstrahlung early in the
Inner Detector may not deposit enough energy in a small enough area to allow the
sliding window algorithm to build a cluster (see Figure 8.4). Moreover if there if
an electron losses enough energy, two or more clusters may be formed. This is one
consquence of using f xed cluster size as opposed to a dynamic cluster size.

The energy reconstruction of an electromagnetic cluster already tries to take into
account some of the effects of bremsstrahlung by compensating for the material in
front of the calorimeter. As successful as these methods are, there is still a signif cant
low energy tail resulting from bremsstrahlung (see Figure 8.5a). Due to the bremss-
trahlung classif cation focussing on effects upon the track reconstruction, only small
differences can be seen between what have been classif ed as hard and medium brem-
sstrahlung events. The medium and hard bremsstrahlung events clearly degrade the
energy resolution of the calorimeter. Low bremsstrahlung events are almost unbiased
and provide the ultimate precision of the calorimeter system.

The fractional energy resolution is conventionally parametrised as

σ(E)/E = a/E ⊕ b/ E⊕ c, (8.2)
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Figure 8.4.: Reconstruction efficiency of electromagnetic clusters and electrons a function of

energy averaged across the active area of the detector.

where a is the noise term, b is the sampling term and c is the constant term [27]. The

values for the parameterisation of the energy resolution can be found in appendix E.

8.2.4. Impact on Track Parameters

The track reconstruction efficiency of electrons is significantly degraded by bremss-

trahlung. The main cause of this degradation is large energy loss processes which

cause the pattern recognition to fail1. Figure 8.4 shows a large discrepancy between

the cluster reconstruction efficiency and the electron reconstruction efficiency, which

is due to deficiencies of the tracking.

The standard track reconstruction assumes that the particle is a pion and as such all

material interactions are assumed to be pion like. By not allowing bremsstrahlung the

overall track parameters for electrons are biased, especially those in the bending plane

(Q/p, φ0, d0). Table 8.1 displays effective mean and width of the track parameter

for 50 GeV electrons and muons within the Inner Detector. It is noted here that the

bending plane parameters for the electrons are biased, while the muons are at their

ideal value. In addition to these biases, the resolution is also heavily compromised.

In the case of the reconstructed momentum the effective 1σ resolution of the events

is increased by a factor of eight while the average momentum is 13% lower than its

real value.

1The pattern recognition does not allow for major changes in track parameters consistent with brem-
sstrahlung
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Figure 8.5.: Energy reconstruction for electromagnetic clusters associated to electrons

Figure 8.6 shows the reconstructed track parameters broken down into the three

different bremsstrahlung classes (see Section 8.2.1) highlighting again the effect of

bremsstrahlung on track reconstruction. For the bending plane parameters it can be

clearly seen that as one progresses from low to medium then to hard bremsstrahlung

cases, the reconstructed track parameters become more biased with poorer resolu-

tion. This is further emphasised in Figure 8.7 where the variation of the effective 1σ

mean and width with energy are shown. For reference, the performance of the default

tracking on electrons of various energies is detailed in Table 8.2.

The non-bending plane parameters (θ , z0) are not overly effected by bremsstrahlung.

There is still an increase in the overall resolution, but the effects are almost negligible

in comparison to the bending plane parameters.
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Electrons

Parameter Mean 68% Width 68% Mean 95% Width 95%

pTrue/pRec 1.137 0.242 1.353 1.270

φ0 (mrad) 0.431 0.828 0.990 3.819

d0 (mm) -0.0242 0.0466 -0.0479 0.1634

θ (mrad) -0.0242 0.3423 -0.0587 1.120

z0 (mm) -0.0132 0.1187 -0.0116 0.3548

Muons

Parameter Mean 68% Width 68% Mean 95% Width 95%

pTrue/pRec 1.000 0.0294 1.000 0.0744

φ0 (mrad) 0.002 0.180 0.001 0.630

d0 (mm) -0.0007 0.0129 -0.0011 0.0379

θ (mrad) -0.0207 0.3411 -0.0283 0.939

z0 (mm) -0.0092 0.0955 -0.0057 0.2599

Table 8.1.: The effective 1σ and 2σ mean and width for the reconstructed track parameters

of electrons and muons with E = 50 GeV

The track parameter uncertainty measurements are also seriously compromised. In-

correct error estimation has implications when reconstructing vertices and evaluating

their viability and hence the physics performance of the detector. The pull distribu-

tions (see Section 4.6 for the definition of the pull), Figure 8.8, show that besides

the track parameters being biased the uncertainties are vastly underestimated. For

example the uncertainty of the reconstructed momentum is six times too small.

Energy ∆d0 (µm) ∆φ0 (mrad) pTrue/pRec

(GeV) M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

10 -27.9 54.1 0.576 1.12 1.069 0.114

25 -27.1 50.1 0.539 1.01 1.110 0.183

50 -25.7 45.3 0.438 0.80 1.140 0.236

75 -22.1 40.8 0.379 0.67 1.161 0.278

100 -19.4 37.4 0.324 0.61 1.174 0.307

200 -12.9 29.7 0.200 0.43 1.197 0.390

Table 8.2.: The effective 1σ width and mean of the bending plane parameters for the default

tracking on electrons
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(d) Longitudinal impact parameter
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Figure 8.6.: Track parameter resolution for E = 50GeV electrons using a the default track

fitter (Global χ2 fitter)
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Figure 8.7.: The effective 1σmean and width of the bending plane parameters for the default

track reconstruction as a function of energy.
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Again hard bremsstrahlung events are the most effected and have their uncertainties

estimated most poorly, especially the momentum reconstruction. It is interesting to

note that low bremsstrahlung events still do not obtain the ideal uncertainty measure-

ments, suggesting that even small amounts of radiative energy loss adversely affect

the track parameter error estimation.

8.3. Track Fitting Incorporating Calorimeter

Information

The primary purpose of the calorimeter is to measure energy. In addition, the calorime-

ter provides information about the location of the energy deposits. The positions of

the clusters are determined by two independent measurements in the η and φ direc-

tion. The measurement in the η direction is not able to aid the recovery of bremsst-

rahlung energy losses significantly as it is in the non-bending plane. However the φ

position measurement of the cluster is in the bending plane and proves to be useful

for electron measurements.

To illustrate how the φ position of an electromagnetic cluster can be used in electron

track reconstruction a simplified linearised helical model will be used (see Section

4.3.3). Consider the case of a barrel-like system. The position in the rφ plane, t , with

respect to the radius of the particle can be written as

t(r) = −d0 +φ0r +
1

2R
r2, (8.3)

where d0 is the transverse impact parameter of the electron, φ0 is the original az-

imuthal angle of the particle and R is the radius of curvature of the particle. Assume

that at a particular radius, RB, the electron loses a fraction of its energy, 1 − Z (Z

being the fraction of energy retained by the electron). To ensure that the electrons

path is continuous at RB

t(RB) =−d0 +φ0RB +
1

2R
R2

B
=−dB

0
+φB

0
RB +

1

2Z R
R2

B
, (8.4)

and

d t

dr

+
+
+
+

r=rB

= φ0+
1

R
rB = φ

B
0
+

1

zR
rB. (8.5)
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Figure 8.8.: The pull distributions of bending plane parameters for E = 50 GeV electrons and

the effective 1σ width as a function of energy.
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Figure 8.9.: The variation of the effective 1σ mean and width with electron energy.

Hence

φB
0
= φ0+

RB

Z R
(Z − 1), (8.6)

and

−dB
0 = −d0 + (φ0 −φB

0 )RB +
R2

B

2Z R
(Z − 1)

= −d0 −
R2

B

2 ZR
(Z − 1). (8.7)

Using the above expressions the equations of motion for the path of the electron after

the bremsstrahlung can be written in terms of only the original particle’s path, the

fraction of energy retained and the bremsstrahlung radius

tB(r, RB, Z) = −d0 −
R2

B

2ZR
(z− 1) +

)

φ0+
RB(z − 1)

zR

*

r +
1

2zR
r2. (8.8)

If it is assumed that the photon is emitted collinear with the electron, then the pho-

ton’s rφ position can be written as a function of r

t P(r) = t(RB) +
d t

dr

+
+
+
+

r=RB

(r − RB) (8.9)

= t(RB) +

)

φ0+
1

R
RB

*

(r − RB). (8.10)
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Assuming that all of the energy from the electron and photon is contained in one

cluster the barycentre can be calculated in the following way:

tBar ycent re = Z tB + (1− Z)t P (8.11)

= Z

-

−d0 −
R2

B

2ZR
(Z − 1) +

)

φ0+
RB(Z − 1)

ZR

*

r +
1

2ZR
r2

.

+(1− Z)

)

−d0 +φ0RB +
1

2R
R2

B
+ (φ0+ RB/R)(r − RB)

*

= d0 +φ0r +
1

2R
r2. (8.12)

Hence the barycentre of the cluster containing all of the energy from the original

electron will be located along the path of the track prior to energy loss. This is also

true when the full helical model is used to describe the passage of the electron. To

incorporate the information of the cluster position into the track fit, this position

must be located along the path of the electron before radiative energy loses occur. To

accomplish this the track model is simply a charged particle that loses some fraction

of its energy at some yet to be determined radius (see Figure 8.10).

t(r) =

⎧

⎨

⎩

d0 +φ0r + 1

2R
r2 r ≤ RB

−d0 −
R2

B

2zR
(z − 1) +

!

φ0+
RB

Z R
(Z − 1)

"

r + 1

2ZR
r2 r > RB

(8.13)

It is interesting to note that the final distance between the track and the photon in the

calorimeter is:

∆t = tB(rC)− t P(rC)

=

#

rC − rB

$2

2zR
(8.14)

and the distance between the track and centre of the cluster at the radius of the cluster

(XB) is

XB = tB(rC)− t(rC)

=
1− z

2zR
(rC − rB)

2 (8.15)

z =
(rC − rB)

2

2XBR− (rC − rB)
2
. (8.16)
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What is presented here is a very simplified model which can not be directly applied

to the ATLAS Inner Detector. Although the magnetic field is quite homogeneous in

the very central part of the detector, towards the ends of the solenoid the effects of its

limited length result in an in-homogeneous magnetic field(see Figure 3.7).

To account for these inhomogeneities the particle must be extrapolated through the

field using a numerical tool referred to as an extrapolator. The default choice in ATLAS

is based upon the Runge-Kutta-Nystrøm integration technique[127,128].

As such the final track model is:

f (p, RB, Z) =

⎧

⎨

⎩

f (p) r ≤ RB

f (pB) r > RB

(8.17)

where pB = p at r = RB except for q/p which changes to q/Z p. Solving such a

problem is rather troublesome as it is an inherently non-linear problem. A discussion

of some possible solution techniques can be found in Appendix F.

A fit using this track model is referred to CaloBrem in the ATLAS community.

y

x

E=E

Unaltered Track

After Bremsstrahlung

Photon Cluster
Barycentre

RB
XB

0

E=(1-Z)E0

E=ZE0

Figure 8.10.: A schematic diagram of the parameters in CaloBrem
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8.4. Calorimeter Information For Tracking

In order to use the information available from the EM cluster measurement they need

to be unbiased and have a known uncertainty2. The most important piece of infor-

mation for the bremsstrahlung recovery is the position of the cluster, in particular, the

azimuthal angular position.

8.4.1. Angular resolution

For a calorimeter cluster to be used in tracking the uncertainty on the position of

the electromagnetic cluster must be known. To determine this a large sample of sin-

gle electrons with energies ranging from 10 GeV to 200 GeV were used. Simulated

electrons were extrapolated through the magnetic field to the surface of the second

sampling layer of the electromagnetic calorimeter, where the difference between the

reconstructed cluster position and the true cluster position was measured. The differ-

ence between the reconstructed position and the measured position is mostly Gaus-

sian, but has a charge dependent tail (see figure 8.11).

This tail is a result of not all the energy being deposited within the cluster window,

due to bremsstrahlung. The tail will increase as the energy of the original electron is

reduced because the energy will spread over a large area (due to the electron bending

in the magnetic field).

To account for this tail a Crystal Ball function was used when fitting the angular

resolution distribution. An example of the fit is shown in Figure 8.11 and Table 8.3.

The fit reveals that the mean of the distribution is biased, the reason for which will be

detailed in Section 8.4.2. The azimuthal angular resolution of the cluster was taken

to be the width of the Gaussian component of the Crystal Ball function.

Charge α n x̄ (mrad) σ (mrad)

Positive 1.523± 0.080 1.89± 0.22 0.607± 0.027 1.317± 0.024

Negative 1.465± 0.075 2.15± 0.22 −0.626± 0.027 1.310± 0.024

Table 8.3.: Results of a fit of a Crystal Ball function to distributions shown in figure 8.11.

2The uncertainty of the energy measurement has been extensively studied elsewhere and the results
of the parameterisation of its performance can be found in Appendix E
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Figure 8.11.: The difference between the measured φ position and true φ position of 25 GeV

electrons η= 0.2 at the surface of the second sampling layer of the calorimeter.

The green solid line is the result of a fit with Crystal Ball function (see table

8.3).

The azimuthal angular resolution of electromagnetic clusters was calculated at vari-

ous energies as a function of η. The results are shown in Figure 8.12. The structure

of the resolution as a function η corresponds well to the geometry of the calorimeter.

For example, the change in absorber thickness at η = 0.8 can be seen as well as the

crack between the barrel and the end-cap at η = 1.5. There is also a clear energy

dependence on the resolution.

The energy dependence of theφ-resolution is proportional to the inverse of the energy

of the cluster (see Figure 8.12b)

σ(φ) = a/E + c, (8.18)

unlike the resolution of energy of the cluster, which is proportional to the inverse of

the square root of the energy.

The variation of the two fit parameters a and c as a function of η are shown in Figure

8.13. These parameters were then parameterised as a function of η and results can

be seen in Appendix E.

8.4.2. Depth

As was seen in Table 8.3 the reconstructed φ position of the cluster is biased. The

helical path of electrons within the Inner Detector means that they will most likely
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Figure 8.12.: The azimuthal angular resolution of electromagnetic clusters from electrons as

function of energy.
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Figure 8.13.: Parameterisation of the angular resolution of the electromagnetic calorimeters

not enter the calorimeter perpendicular to the surface of the detector. The electro-

magnetic shower has finite length, which is determined by the energy of the electron,

and the energy will be asymmetrically spread in the φ direction due to the electron

not entering the calorimeter perpendicular to the surface.

Figure 8.11 shows the average difference between the reconstructed cluster position

and the position of the simulated electron in the calorimeter. The figure indicates

that there is a bias in the reconstructed position at the surface of the second sampling

layer of the calorimeter. By varying the depth that the truth particle is extrapolated

into the calorimeter this bias can be eliminated (see Figure 8.14). The depth at which

the bias is eliminated corresponds to the depth at which the resolution of the cluster

position is optimal (see Figure 8.15).
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The depth at which there is no bias in the reconstructed φ will be referred to as

the apparent depth of the cluster. The apparent depth of the cluster could only be

calculated in the barrel region. The apparent depth of the cluster does not behave

like the longitudinal position barycentre of the electromagnetic shower as it becomes

shallower as the energy increases (see Figure 8.16).

Use of the apparent depth during fitting yielded negligible improvement to the per-

formance of CaloBrem and as a result the depth of the cluster was fixed to be the

surface of the second sampling layer of the calorimeter.
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Figure 8.14.: Mean cluster angular position bias as a function of radius at η = 0.4. Negative

tracks represented by the open circles and positive tracks by the full circles.
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Figure 8.15.: Azimuthal angular resolution of electromagnetic clusters in the second sam-

pling layer as a function of radius.
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Figure 8.16.: The apparent depth of a cluster as a function of energy for a cluster at η = 0.4.
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Figure 8.17.: The parameterisation of the the apparent depth of the electromagnetic clusters.

8.5. Choice of Parameters

The choice parameters to be solved is crucial when solving any problem. If the pa-

rameters are too correlated the minimisation procedure will converge slowly (if at

all) causing fitting to become very inefficient and time consuming. For this particular

problem the amount of energy retained (ZB) is very highly correlated to the initial

azimuthal direction of the electron and the initial momentum of the electron. In or-

der to reduce the level of correlation the amount of energy retained can be replaced

by the distance separating the cluster position and the impact of the electron in the

calorimeter, XB (see Equation 8.15).

The fit needs to be seeded with an initial guess of all of the track parameters as

well as the two bremsstrahlung parameters. The track parameters are seeded with

the results of the standard track reconstruction. The radius of the bremsstrahlung
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begins at a radius of 250 mm and XB is seeded with the distance between the cluster

and the default track at the calorimeter. The starting position of the bremsstrahlung

radius had negligible effect on the convergence of the algorithm as long as there were

enough hits either side of the bremsstrahlung position to define the track.

The range that the parameters can fit with is also limited (see Table 8.4). Although

this is not entirely necessary it does ensure the solution is physically reasonable.

As bremsstrahlung only effects the bending plane parameters little is to be gained

by trying to fit all seven parameters. To reduce the computation time only the three

bending plane parameters (d0, φ0, Q/p) are fit, with the two bremsstrahlung param-

eters (RB, XB).

Parameter Lower Limit Upper Limit

d0(mm) −10 10

z0(mm) −500 500

φ0 (rad) −π π

θ (rad) 0 π

Q/p (MeV−1) -0.002 0.002

RB (mm) 10 1000

XB -1000 10

Table 8.4.: The allowed range for fit parameters in CaloBrem

8.6. Performance

To find the optimal track parameters a χ2 minimisation procedure is employed. The

performance of this procedure and the improvements of track reconstruction caused

by the new track model are discussed in the following section.

8.6.1. Minimisation Performance

The performance of the χ2 minimisation technique is vital to the overall performance

of the track fitting with CaloBrem. As explained in Appendix F the minimisation pro-

cess works by mapping the χ2 landscape, in an intelligent manner, to find a minimum.



Electron Bremsstrahlung Identification and Estimation 201

This requires a function that calculates the χ2 to be called a number of times. How-

ever the number of times the function is called varies depending on the how well the

problem is defined.

To ensure that the minimisation does not enter some form of infinite loop a limit is

set on the maximum number of function calls. However, limiting this maximum to a

number that is too small does not allow the system to converge. Figure 8.18 shows

both the average time for a single fit and the fraction of events that has converged for

a given maximum number of iterations. Incidentally it is interesting to note that for

events that will eventually fail to converge take loner to do so.

Little overall computation cost is incurred by increasing the maximum number of

iterations allowed once more than 90% of the tracks converge. To ensure that no one

fit would take longer than one second, and that more than 99% would converge, an

upper limit of 2000 function calls was set. This function takes on average 330 µs per

call3.

Lower energy electrons require more iterations in the minimisation process as the

problem is less well defined. This is a result of the large uncertainty of the cluster

position, which is in fact vital for the minimisation. This uncertainty increases as the

energy decreases.

It should be noted that there is a significant number of events where the problem

fails to converge, particularly at low energy (see Figure 8.19). In the limit of very low

energy loss due to bremsstrahlung, when fitting, the radius of the bremsstrahlung will

be totally undefined and as a result the fit will fail to converge. As it is difficult to

ascertain if bremsstrahlung has occurred prior to fitting, it is impossible to avoid such

situations.

8.6.2. Track Parameter Reconstruction

The ultimate goal is to accurately estimate the track parameters, as it is these that

determine the usefulness of the technique. Figure 8.20 displays the three bending

plane track parameters for 50 GeV electrons. When compared to Figure 8.6 an ob-

vious improvement can be seen in both the resolution and level of bias of the track

3These tests were ran in a single threaded process on a system with dual Intel Xeon E5450 CPU’s
running at 3.00 GHz with 16 GB of memory
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Figure 8.18.: The effect of varying the maximum number of iterations on the convergence of

MINUIT and the average time taken to process one electron (50 GeV).
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Figure 8.19.: Efficiency of MINUIT as a function of electron energy.

parameters, especially in the hard bremsstrahlung case. Figure 8.22 compares the

effective 1σ mean and width (Table 8.5) to that of the default track fitter (Table 8.2),
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again showing the large improvement reconstructed track parameters. Also of note is

that the degree of improvement increases as the energy increases. This is a result of

the cluster position being better defined.

Figure 8.21 displays the mean momentum for all the bremsstrahlung categories as

a function of η. CaloBrem makes major improvements across the whole η range

with the largest improvement evident in the central barrel region. The performance

is much poorer in the region around |η| = 1.5, which coincides with the crack in

the calorimeter and hence where the energy and position of clusters are most poorly

defined. This is unfortunate as this is the region of the Inner Detector containing the

largest amount of material and hence the region where bremsstrahlung would most

likely occur.
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Figure 8.20.: Track parameter resolution for E = 50GeV electrons using CaloBrem.
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Figure 8.21.: The mean reconstructed momentum for E = 50 GeV electrons as function of η
for the default track fitter and CaloBrem.

Energy ∆d0 (µm) ∆φ0 (mrad) pTrue/pRec

(GeV) M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

10 -9.72 52.4 0.183 0.951 1.0216 0.077

25 -8.01 43.9 0.170 0.820 1.0369 0.128

50 -4.37 31.3 0.095 0.525 1.0378 0.141

75 -3.06 26.2 0.059 0.419 1.0399 0.155

100 -2.26 23.5 0.046 0.358 1.0400 0.169

200 -0.30 19.0 0.015 0.256 1.0341 0.218

Table 8.5.: The effective 1σ width and mean of the bending plane parameters for CaloBrem
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Figure 8.22.: The effective 1σ mean and width of the bending plane parameters of CaloBrem

as a function of energy. The three bremsstrahlung categories are shown.
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Figure 8.23.: The effective 1σ mean and width of the bending plane parameters of CaloBrem

and the default track fitter as a function of energy.
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Error Estimation

For the uncertainty on the track parameters to be estimated correctly, the track model

and the uncertainty on the measurements must also be optimal. The standard track

reconstruction severely underestimated the uncertainty on the bending plane param-

eters as the energy losses due to bremsstrahlung are not incorporated into the track

model. Our modified track model should improve the estimation of the uncertainty.

The pull distributions (see Figure 8.24) show large improvements when compared

with the default track reconstruction. However, the uncertainty on all the track pa-

rameters, especially the reconstructed momentum, is still underestimated.

The reason for the underestimated uncertainty is most likely the result of the track

model not being a true representation of what has actually occurred. The model is

limited to a single bremsstrahlung, which is a rather large simplification. In fact, the

error estimation on events where there is only one significant bremsstrahlung is much

better, although still not ideal, suggesting that some of the problem may lie in the way

that MINUIT estimates the uncertainty. Although the standard error estimation can

be improved upon by using such tools as MINOS, the added computation time proved

to make these techniques unfeasible.
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Figure 8.24.: The pull distributions of bending plane parameters for E = 50 GeV electrons

and the effective 1σ width as a function of energy.
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8.6.3. Additional Constraints

Additional constraints can be added to the track fit to improve the trajectory estima-

tion. A constraint on the transverse impact parameter derived from the position of

the beam spot proved to be especially useful and improved the accuracy of all of the

track parameters. Care must to be taken when using this constraint to ensure that it is

only considered on “prompt” electrons, those that originate from the primary collision

vertex.

The constraint is applied on the transverse impact parameter. The beam spot posi-

tion, given in Cartesian coordinates, is converted into an apparent transverse impact

parameter based upon the initial direction of the track

dBS
0
=−xBS sinφ0+ yBS cosφ0, (8.19)

where xBS and yBS are the x and y positions of the beam spot and φ0 is the initial

direction of the electron. This constraint makes the assumption that the distances

involved are small.

The uncertainty attributed to the impact parameter due to the uncertainty on the

beam spot position is

σ(dBS
0 ) =

#

σx sinφ0

$2− 2σx y sinφ0 cosφ0+
!

σy cosφ0

"2
, (8.20)

where σx , σy and σx y are the uncertainty on the position of the beam spot in the x

and y direction and the correlation between them. Finally the χ2 contribution of the

beam spot constraint is:

χ2
BS
=

-

d0 − dBS
0

σ(dBS
0 )

.2

. (8.21)

Significant improvements can be seen in the resolution for low momentum electrons

and the bias is also much reduced (see Table 8.6). The improvements decrease as

the energy increases. This is not surprising as the resolution of the impact parameter

improves as the energy of the electron increases reducing the impact of the constraint.

The calorimeter provides a completely independent measurement of the energy of

the electron and can be used to provide a constraint on the momentum of the track.
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Energy ∆d0 (µm) ∆φ0 (mrad) pTrue/pRec

(GeV) M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

10 -3.58 23.6 0.0865 0.623 1.0167 0.068

25 -3.04 20.5 0.0871 0.489 1.0302 0.109

50 -1.77 16.1 0.0571 0.330 1.0329 0.121

75 -1.01 14.8 0.0406 0.273 1.0336 0.135

100 -0.57 14.0 0.0245 0.242 1.0369 0.147

200 -0.075 12.7 0.0070 0.187 1.0358 0.191

Table 8.6.: The effective 1σ width and mean of the bending plane parameters for CaloBrem

including information from the beam spot

Energy ∆d0 (µm) ∆φ0 (mrad) pTrue/pRec

(GeV) M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

10 -9.08 49.2 0.171 0.865 1.0176 0.0668

25 -5.08 40.5 0.103 0.688 1.0216 0.0763

50 2.48 27.6 -0.0243 0.394 1.0070 0.0475

75 3.63 22.6 -0.0393 0.288 1.0041 0.0355

100 3.83 20.2 -0.0427 0.240 1.0021 0.0299

200 2.69 15.7 -0.0311 0.158 1.0001 0.0215

Table 8.7.: The effective 1σ width and mean of the bending plane parameters for CaloBrem

including a constraint on the tracks energy derived from the cluster energy.

The energy resolution of the calorimeter is superior to that of the Inner Detector at

energies above 10 GeV.

The χ2 contribution of the constraint is

χ2
E
=

) |Q.p|− E

σ(E)

*2

. (8.22)

This constraint improves the resolution of the track parameters, especially at high

momentum. However the track parameters d0 and φ0 are now biased in the opposite

direction (see Table 8.7). The resolution of the momentum of the track is dictated by

the resolution of the calorimeter cluster and is no longer determined by the accuracy

of the tracking.
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Energy ∆d0 (µm) ∆φ0 (mrad) pTrue/pRec

(GeV) M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

10 -3.83 23.3 0.108 0.576 1.0134 0.0611

25 -2.38 20.6 0.072 0.425 1.0188 0.0722

50 0.791 15.3 -0.00463 0.265 1.0092 0.0487

75 2.01 13.8 -0.0199 0.204 1.0046 0.0367

100 1.96 13 -0.0266 0.175 1.0029 0.0305

200 1.94 11.4 -0.024 0.124 1.0002 0.0217

Table 8.8.: The effective 1σ width and mean of the bending plane parameters for CaloBrem

including both the information from the beam spot and the energy of the calorime-

ter

Finally both constraints can be combined. At high energy the constraint on the beam

spot adversely effects the resolution of the reconstructed momentum resolution when

compared to that of the just energy constraint alone. While the resolution of the other

two track parameters is improved upon (see Table 8.8).

8.6.4. Summary

This technique for incorporating the bremsstrahlung into the track model shows sig-

nificant improvements in the reconstructed track parameters at high energy. Even at

low energy there is definite improvement to the reconstructed track parameters as

they become less biased. The resolution is also mildly improved, however given the

low fraction of events that are actually successfully fit, the true strength of the tech-

nique lies at higher energies (E > 25 GeV). Tables 8.9, 8.10 and 8.11 summarise the

improvements of the track parameters resolution when using the CaloBrem technique

with various constraints over the default track reconstruction.

8.6.5. Bremsstrahlung Parameter Reconstruction

Although the normal track parameters are the key parameters for physics analysis,

the final two parameters of the model, the bremsstrahlung radius and the amount of
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Energy (GeV) Default Beamspot Energy Beamspot + Energy

10 0.964 0.436 0.900 0.432

25 0.851 0.408 0.778 0.410

50 0.685 0.356 0.607 0.341

75 0.639 0.362 0.554 0.342

100 0.628 0.374 0.542 0.353

200 0.637 0.427 0.533 0.390

Table 8.9.: The ratio between the effective 1σ width of d0 for the default track reconstruction

and CaloBrem with different constraints

Energy (GeV) Default Beamspot Energy Beamspot + Energy

10 0.852 0.555 0.767 0.519

25 0.798 0.486 0.662 0.427

50 0.664 0.413 0.496 0.338

75 0.618 0.399 0.426 0.304

100 0.604 0.401 0.403 0.297

200 0.601 0.432 0.371 0.296

Table 8.10.: The ratio between the effective 1σ width of φ0 for the default track reconstruc-

tion and CaloBrem with different constraints

energy lost, can provide useful information about the detector itself. Using a com-

bination of the location of reconstructed bremsstrahlung vertices and the amount of

energy lost, a material map of the Inner Detector could be produced.

Bremsstrahlung Radius

An electron will generally bremsstrahlung multiple times as it travels through the

detector. Hence to define the true position of the bremsstrahlung is rather difficult

as only one bremsstrahlung vertex is reconstructed. As such, the reconstructed ver-

tex will be a sort of weighted average of the bremsstrahlung positions. To simplify

the situation the reconstructed bremsstrahlung position will be compared to that of

the position of the largest bremsstrahlung, the vertex where the largest amount of

energy is lost. This simplification is not ideal. When there are multiple significant

bremsstrahlung it will act as a first order approximation.
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Energy (GeV) Default Beamspot Energy Beamspot + Energy

10 0.673 0.599 0.576 0.537

25 0.692 0.594 0.404 0.397

50 0.600 0.515 0.200 0.208

75 0.566 0.485 0.128 0.134

100 0.560 0.479 0.097 0.101

200 0.566 0.489 0.056 0.057

Table 8.11.: The ratio between the effective 1σ width of pTrue/pRec for the default track

reconstruction and CaloBrem with different constraints

The χ2/DoF of the track was set between 0.8 and 2.0. In addition, the bremsst-

rahlung radius (RB) was required below 990 mm and above 12 mm to ensure that

the reconstructed bremsstrahlung radius was not too close to the limits defined in

for the minimisation process. This left approximately 70% of the electrons that were

successfully fit.

Comparing the reconstructed bremsstrahlung resolution to the reconstructed fraction

of energy retained (Figures 8.25 and 8.26), a clear trend emerges. As the recon-

structed energy loss decreases the resolution on the reconstructed bremsstrahlung

radius increases (this is highlighted in Figure 8.26). There are two reasons for this.

Firstly as the bremsstrahlung radius is more accurate at higher energy losses it sug-

gests that the bremsstrahlung vertex is reconstructed more accurately when there is

a greater separation between the track’s point of impact in the calorimeter and the

position of the electromagnetic cluster. Secondly if the energy loss estimate is accu-

rate then it suggests that the electron must lose # 50% of its energy in order to have

accurately reconstructed the bremsstrahlung vertex. As such it is impossible to have

another bremsstrahlung that loses more energy, hence the other bremsstrahlung will

more than likely be relatively small. Furthermore, the true bremsstrahlung position,

which is estimated by the position of the largest bremsstrahlung, is accurate.

These results show that the use of all constraints improves the bremsstrahlung ra-

dius resolution, and helps to eliminate the majority of the unphysical bremsstrahlung

events, where ZB > 1. This allows for the reconstruction of bremsstrahlung in the

pixel detector.

To map the material of the Inner Detector, a relatively fine granularity is required.

Only events with ZB resolution below 5 cm were selected. This drastically reduces the
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Figure 8.25.: The difference between the reconstructed bremsstrahlung radius and the radius

of the largest bremsstrahlung as function of the measured fraction of energy

retained.

remaining fraction of events with just under 5% of events remaining. The difference

between the reconstructed bremsstrahlung radius and the largest radius is shown in

Figure 8.27.

For both of the selected energy points there is a significant non-Gaussian tail present.

At low energy it is biased towards underestimating the radius of the bremsstrahlung,

while at high energy it is biased to overestimating the radius.

In the high energy sample there is clearly some structure in the resolution that is not

present at low energy. The structure seems to correlate quite well to material layers

but further study is required to understand why it is not present at low energy as seen

in Figure 8.28.

Figure 8.28 displays the bias in the mean reconstructed bremsstrahlung radius and its

dependence on the true bremsstrahlung radius. For both samples the reconstructed
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Figure 8.26.: The dependance of the reconstructed bremsstrahlung radius resolution on the

reconstructed fraction of energy retained (when using both a beam spot and

energy constraint). The results are obtain from a Gaussian fit.
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Figure 8.27.: The difference between the reconstructed bremsstrahlung radius and the true

radius of largest bremsstrahlung after selection cuts have been applied.

bremsstrahlung radius is relatively unbiased below a radius of 55 cm (the last layer

of the SCT) but beyond that the measurement becomes heavily underestimated. This

looks to be a result of an inability to determine the occurrence of bremsstrahlung

within the TRT detector.

Figure 8.29 displays the reconstructed bremsstrahlung radius when compared to true

bremsstrahlung radius smeared by 1.25 cm in central region of the detector. It shows

that the 3 pixel layers and the 4 silicon layer can be resolved. The reconstruction

bremsstrahlung occurring first pixel layers is not 100% efficient. Also it is clear to see

that the majority of bremsstrahlung occurring in the TRT is reconstructed in a radius

of approximately 60 cm.
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Figure 8.28.: The dependance of mean reconstructed bremsstrahlung radius and resolution

on the true of the bremsstrahlung. The results are obtained from a Gaussian fit.
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Figure 8.29.: The reconstructed bremsstrahlung radius (dashed line and points) and the true

bremsstrahlung radius (solid blue line) which has been smeared by a Gaussian

with a width of 1.25 cm.
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Bremsstrahlung Energy

Using the same event selection as the bremsstrahlung radius study, the fraction of en-

ergy remaining after the bremsstrahlung (ZB) can be reconstructed relatively well. In

fact if one inspects events where only one bremsstrahlung has occurred (see Figures

8.30a 8.30c), the resolution of ZB is 4% at E = 10 GeV and less than 1% at 75 GeV.

Looking at the resolution of the ZB reconstruction in events where multiple brem-

sstrahlung occur the amount of energy lost is overestimated especially in the high

energy electrons. This suggests that the measured energy loss is not just from the

largest bremsstrahlung but from all bremsstrahlung that occur. Figure 8.31 confirms

this.
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Figure 8.30.: The difference between reconstructed ZB and fraction of energy retained after

the largest bremsstrahlung.
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Figure 8.31.: The difference between reconstructed ZB and fraction of energy retained before

the electron reaches a radius of 70 cm for 75 GeV electrons. The core the

distribution is fit with a Gaussian.
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8.7. Outlook

A new tracking based bremsstrahlung recovery technique that utilises the position of

the electromagnetic cluster has been implemented and tested in the ATLAS software

framework. The algorithm improves as the energy electron increases where the posi-

tion of the cluster in the calorimeter is well defined. However useful improvements

can be gained at low energies.

These initial studies were performed on an idealised sample of events consisting only

of a single electron. The effects of “pile up” and the underlying event on the track,

cluster and electron reconstruction have not been taken into account, nor have the

effects of misalignments of the Inner Detector and calorimeter. It would be expected

that misalignments of the calorimeter with respect to the Inner Detector could signif-

icantly degrade the performance of the technique.

From the information gained about the bremsstrahlung location and strength it may

be possible, with a more refined study, to create a detailed material map of the Inner

Detector. In order to generate this material map understanding of the efficiency of the

bremsstrahlung reconstruction as a function of radius, energy and η will be required.

It may also be possible to gain some information from the bremsstrahlung that may

help improve the electron identification, however this is yet to be fully explored.





9
CHAPTER

PHYSICS CASE STUDIES

In Chapter 8 a new technique for recovering the effects of bremsstrahlung was intro-

duced and its performance on single electrons was assessed. CaloBrem was shown to

significantly improve the momentum estimates of electrons above 25 GeV.

CaloBrem is not the only bremsstrahlung recovery technique implemented in the AT-

LAS software. Two other techniques that have been developed, the Gaussian Sum

Filter (GSF) and Dynamic Noise Adjustment (DNA), both of which are based upon

Kalman filtering and give significant improvements over the standard track recon-

struction. Their performances are relatively similar for low energy electrons. For high

energy electrons the GSF works better than DNA. However, the GSF is 10 times slower

than DNA1.

In this chapter a very preliminary tracking based study of several physics processes

are discussed. Three different track fits are considered: The default track fit which is a

global χ2 fit that assumes that energy losses are only due to ionisation; the GSF, which

incorporates non Gaussian material effects based upon Geant4 simulation of electron

energy loss; CaloBrem, which is not 100% efficient, in events where the CaoBrem fit

1GSF takes on average 52 ms per track on a Intel Xeon E5450 CPU’s running at 3.00 GHz
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fails the results of the default track fit are used. Particle identification is performed

through the ATLAS reconstruction, however Monte-Carlo is used to identify the origin

of those particles.

Electrons from the decay of various mass resonance’s will be used to calibrate the elec-

tromagnetic calorimeter and help in the validation of the performance of the detector.

Some of these techniques require precise estimation of the momentum of tracks and

as such the performance of bremsstrahlung techniques should be evaluated.

Three physics processes are considered: J/ψ → e+e− (Section 9.1); Υ(1S) → e+e−

(Section 9.2); and Z → e+e− (Section 9.3).

9.1. J/ψ→ e+e−

The J/ψ, mass of 3096.916 ± 0.011 MeV and width of 93.2 ± 2.1 keV [5], has

electron pair decay mode with BR(J/ψ→ e+e−) = 5.94± 0.06 %.

A sample of 100,000 J/ψ→ e+e− decays, generated and simulated through the full

simulation procedure of ATLAS, were inspected. The simulation required that the

transverse momentum of both leptons was at least 3 GeV. The requirement was put

in-place to reduce simulation time due to the low probability of an electron below

3 GeV being reconstructed. Figure 9.1 shows the true transverse momenta of the

leptons, ordered according to their energy. The leading lepton is more energetic than

the secondary lepton.

The electrons reconstructed in the event are then matched to the Monte-Carlo truth.

If the events contain a reconstructed electron and positron that originated from the

Jψ, then the event is considered in the study. Such a selection process leaves 45.1%

of the generated events for analysis.

The resolution values are given in tables 9.1 and 9.2. As in the previous chapter (see

Section 8.2) the effective width is quantified as the narrowest half-width enclosing

68% (1σ) and 95% (2σ) of the distribution. The reconstructed lepton Q/p residuals

are shown in Figure 9.2. In all cases the GSF provides the best overall estimate of the

momentum. It reduces the effective 1σ width by 37% when compared to the default

track reconstruction and the mean of those events are closer to the ideal value.
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The invariant mass distributions of the e+e− pair are shown in Figure 9.3. The resolu-

tion of the reconstructed invariant mass is dominated by the resolution of the momen-

tum of the tracks. The peak of the GSF invariant mass distribution is in good agree-

ment with the accepted mass of the J/ψ. As the electrons momentum is largely un-

derestimated by the standard track reconstruction, the reconstructed invariant mass

has no clear peak, but a kinematic edge at the true energy of the J/ψ.

Due to the poor efficiency of CaloBrem at low energy (35% for this sample) the fitter

provides little improvements over the standard track reconstruction 2. For the 12.7%

of events that have both tracks successfully fitted by CaloBrem the improvements in

the reconstructed invariant mass can be clearly seen (see Figure 9.3b). The effective

1σ width of the reconstructed mass is actually better than the GSF (3% improve-

ment), however the 1σ mean is worse than that of the GSF (10.9% underestimation

compared to 5.5% underestimation).

Energy Leading Lepton Secondary Lepton Mee−MJ/ψ (GeV)

M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

Default 1.075 0.127 1.075 0.127 -0.282 0.298

CaloBrem 1.052 0.116 1.056 0.119 -0.219 0.280

CaloBrem 100% 1.025 0.092 1.022 0.089 -0.109 0.224

GSF 0.999 0.080 1.000 0.080 -0.055 0.232

Table 9.1.: The effective 1σ width and mean momentum of tracks from decay of the J/ψ and

the reconstructed mass

Energy Leading Lepton Secondary Lepton Mee−MJ/ψ (GeV)

M(95%) R(95%) M(95%) R(95%) M(95%) R(95%)

Default 1.165 0.440 1.166 0.447 -0.417 0.628

CaloBrem 1.128 0.461 1.130 0.466 -0.339 0.672

CaloBrem 100% 1.061 0.369 1.061 0.370 -0.175 0.687

GSF 1.059 0.376 1.058 0.373 -0.173 0.626

Table 9.2.: The effective 2σ width and mean momentum of tracks from decay of the J/ψ and

the reconstructed mass

2For these studies any failed fits use the default tracking results
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Figure 9.1.: Distributions of the true momenta of the leptons from J/ψ decay. The leptons

are ordered according to their energy with the leading lepton being more ener-

getic than the secondary lepton. Both Leptons were required to have transverse

momentum 3 GeV.
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Figure 9.2.: Normalised Q/p residuals of the two leptons originating from the J/ψ→ e+e−

decay. Tracks reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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(b) CaloBrem Successful

Figure 9.3.: The reconstructed invariant mass of the J/ψ. The effectiveness of CaloBrem can

clearly be seen in events where the fit was successful on both leptons (Figure

9.3b). Events reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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9.2. Υ(1S)→ e+e−

The Υ(1S), mass of 9460.30 ± 0.26 MeV and width of 54.02 ± 1.25 keV[5], has

electronic decay mode with a branching ratio, BR(J/ψ→ e+e−) = 2.38% ± 0.11%.

A sample of 100,000 Υ(1S) → e+e− decays, generated and simulated through the

full simulation procedure of ATLAS, were inspected. The simulation required that the

transverse momentum of both leptons was at least 3 GeV. The requirement was put in-

place to reduce simulation time due to the low probability of an electron below 3 GeV

being reconstructed. Figure 9.4 shows the true transverse momenta of the leptons,

ordered according to their energy. The leading lepton is defined to more energetic

than the secondary lepton. Only events with electron truly originating from Υ(1S)

where considered in this study.

The resolution values are given in tables 9.3 and 9.4. The reconstructed lepton Q/p

residuals are shown in Figure 9.5 There is slight degradation in the momentum reso-

lution of the track reconstruction when compared to that of the track from the J/ψ.

This is a result of the average track momentum being slightly larger in the case of

the Υ. Again in all cases the GSF provides the best estimate of the momentum of the

tracks. It reduces the effective 1σ width by 37% when compared to the default track

reconstruction and the mean of those events is now unbiased.

The invariant mass distributions of the e+e− pairs are shown in Figure 9.6. The peak

of the GSF invariant mass distribution is in good agreement with the accepted mass

of the Υ(1S). The standard track reconstruction has very similar features to that of

the J/ψ. It is interesting to note that the reconstructed mass resolution is effectively

three times larger than that of the J/ψ whose mass is three times smaller than that

of the Υ(1S).

Again due to the poor efficiency of CaloBrem at low energy (36% for this sample) it

provides little improvements over the standard track reconstruction. For the 13.0% of

events that have both tracks successfully fitted by CaloBrem, the improvements in the

reconstructed invariant mass can clearly be seen (see Figure 9.6b). In the effective 1σ

width of the reconstructed mass is actually better than the GSF (7% improvement).

However the 1σmean is worse than that of the GSF (3.2% underestimation compared

to 2.0% underestimation).
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The effective 2σ width of the invariant mass suggests that the default track recon-

struction encompasses 95% of the events in the smallest width. This happens because

for all fitters to ensure that 95% of the events are captured, the window of acceptance

must reach into the tails of the distribution. As the default track reconstruction will

not overestimate the momentum of the electrons the window will be the smallest.

Energy Leading Lepton Secondary Lepton Mee−MΥ(1S) (GeV)

M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

Default 1.078 0.131 1.079 0.133 -0.908 0.944

CaloBrem 1.054 0.121 1.057 0.126 -0.710 0.902

CaloBrem 100% 1.022 0.091 1.019 0.090 -0.307 0.702

GSF 1.001 0.086 1.001 0.086 -0.192 0.756

Table 9.3.: The effective 1σ width and mean momentum of tracks from decay of the Y (1S)

and the reconstructed mass

Energy Leading Lepton Secondary Lepton Mee−MΥ(1S) (GeV)

M(95%) R(95%) M(95%) R(95%) M(95%) R(95%)

Default 1.175 0.481 1.178 0.480 -1.339 1.935

CaloBrem 1.133 0.502 1.139 0.505 -1.085 2.093

CaloBrem 100% 1.058 0.357 1.058 0.364 -0.530 1.952

GSF 1.065 0.402 1.065 0.407 -0.587 1.940

Table 9.4.: The effective 2σ resolution and mean momentum of tracks from decay of the

Y (1S) and the reconstructed mass

9.3. Z → e+e−

The Z boson has a mass 91.188 ± 0.002 GeV and a width σ = 2.495 ± 0.002 GeV[5].

It has an equal probability of decaying into any pair of charged leptons, BR(Z → e+e−)

= BR(Z → µ+µ−) = BR(Z → τ+τ−) = 1.12%. The large production rate of Z at the

LHC will allow the calculation of the W-mass to a high precision.

A sample of 100,000 Z → e+e− decays were inspected. The sample required that at

least one of the electrons is within the Inner Detector acceptance (i.e. |η| < 2.5).
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Figure 9.4.: Distributions of the true momenta of the leptons from Υ(1S) decay. The leptons

are ordered according to their energy with the leading lepton being more ener-

getic than the secondary lepton. Both Leptons were required to have transverse

momentum 3 GeV.
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Figure 9.5.: Normalised Q/p residuals of the two leptons originating from the Υ → e+e−

decay. Tracks reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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Figure 9.6.: The reconstructed invariant mass of the Υ(1S). The effectiveness of CaloBrem

can clearly be seen in events where the fit was successful on both leptons (Figure

9.6b). Events reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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Figure 9.7 shows the true transverse momenta of the final state leptons. After select-

ing events that have both an electron and a positron that originate from a Z boson

(matched using Monte-Carlo truth) 40.2% of events are left for analysis .

The normalised reconstructed Q/p residuals are shown in Figure 9.8 and the corre-

sponding effective 1σ and 2σ width and mean values are provided in tables 9.5 and

9.6. As expected the momentum resolution is worse for leptons from the Z decay than

from J/ψ and Υ decays as leptons are significantly more energetic.

The invariant mass of the lepton pair is shown in Figure 9.9. Due to the large width

of the Z boson it of greater use to inspect Figure 9.10 which shows the difference

between the reconstructed mass and the generated mass of the lepton pair. Large

improvements in the reconstructed mass is seen for both CaloBrem and GSF.

The effective 1σ resolution, when compared to the default tracking, is improved by

10% when using the GSF and 18% when using CaloBrem. The effective mean is

also significantly improved. In the special case were both tracks are fit by CaloBrem

(56% of events) the effective 1σ resolution is improved by 29% while the mass was

underestimated by 4.5 GeV.

A high energy tail is present in the reconstructed invariant mass distribution for Calo-

Brem. This is a result of CaloBrem overestimating the momentum of the electrons.

This tail, if considered a problem, can simply be removed by replacing the tracks mo-

mentum by the default reconstructed mass. For example this can be done if the ratio

between the reconstructed energy of the electromagnetic cluster and the tracks mo-

mentum is less than 0.9. This tail results in the effective 2σ resolution of CaloBrem

being larger than that of the default tracking but the distribution is generally more

symmetric.

Energy Leading Lepton Secondary Lepton Mee −MZ (GeV)

M(68%) R(68%) M(68%) R(68%) M(68%) R(68%)

Default 1.130 0.244 1.130 0.241 -13.55 14.87

CaloBrem 1.048 0.160 1.047 0.155 -6.08 12.21

CaloBrem 100% 1.035 0.137 1.035 0.134 -4.46 10.53

GSF 1.024 0.168 1.024 0.168 -5.40 13.36

Table 9.5.: The effective 1σ width and mean momentum of tracks from decay of the Z and

the reconstructed mass
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Energy Leading Lepton Secondary Lepton Mee −MZ (GeV)

M(95%) R(95%) M(95%) R(95%) M(95%) R(95%)

Default 1.375 1.549 1.370 1.552 -20.88 31.15

CaloBrem 1.116 1.117 1.114 1.170 -10.32 43.26

CaloBrem 100% 1.060 0.709 1.064 0.687 -5.34 38.80

GSF 1.195 1.230 1.192 1.239 -12.41 32.77

Table 9.6.: The effective 2σ width and mean momentum of tracks from decay of the Z and

the reconstructed mass
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Figure 9.7.: Distributions of the true momenta of the leptons from Z boson decay. The lep-

tons are ordered according to their energy with the leading lepton being more

energetic than the secondary lepton.
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Figure 9.8.: Normalised Q/p residuals of the two leptons originating from the Z → e+e−

decay. Tracks reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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Figure 9.9.: The reconstructed invariant mass of the Z . The effectiveness of CaloBrem can

clearly be seen in events where the fit was successful on both leptons (Figure

9.9b). Events reconstructed with the GSF (blue dashed) are compared to that of

CaloBrem (red dotted line) and the default tracking (solid black).
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Figure 9.10.: The difference between the reconstructed invariant mass of the Z and the gen-

erated. The effectiveness of CaloBrem can clearly be seen in events where the

fit was successful on both leptons (Figure 9.10b). Events reconstructed with

the GSF (blue dashed) are compared to that of CaloBrem (red dotted line) and

the default tracking (solid black).



A
APPENDIX

THE EFFECT OF MATTER ON THE

TRAJECTORY

The simple notion of particles traveling undisturbed in a homogenous magnetic field

can never be realised in particle physics experiments if we wish to measure the parti-

cles. The need to measure the trajectory of particles requires the particle to interact

with the active detector elements. The detector not only consists of the active detec-

tor but there may also be significant amount of dead material in the form of support

structures or services, that will be detrimental to the measurement of the particles

trajectory. Disturbances to the particles trajectory can be accounted for in the track

model allowing for material interactions to be accounted for.

A.1. Energy Loss

In our track model it was assumed that the energy of charged particle was constant. In

reality when a charged particle traverses through matter some energy is transmitted

231



232 The effect of matter on the trajectory

to medium. As a result the supposed constant, p, must be readjusted to account for

this loss and an understanding of the mechanisms of energy loss are required.

A.1.1. Ionisation

Energy loss by ionisation is the most prevalent form of energy loss for a charged

particle within the tracking volume. The ionisation process is stochastic, however the

fluctuation in energy loss is small with respect to the mean. The mean rate of energy

loss is normally given by a deterministic approximation, the Bethe-Bloch equation[5],

−
dE

d x
= Kq2

Z

A

1

β2

8

1

2
ln

2mec
2β2γ2Tmax

I2
− β2−

δ
#

βγ
$

2

9

, (A.1)

where β and γ are the relativistic kinematic variables, E is in MeV and x is in cm. All

constants are defined in Table A.1.

Symbol Definition Units / Value

K/A Constant of proportionality 0.3071 MeV g−1 cm2

M Mass of incident particle MeV/c2

q Elementary charge of incident particle n/a

me Electron mass 0.511 MeV/c2

Z Atomic number n/a

A Atomic mass g mol−1

ρ density g cm−3

I Mean excitation energy eV

δ
#

βγ
$

Density effect correction

Tmax Maximum energy a particle can impart to an electron MeV

Table A.1.: Summary of variables used in the Bethe-Bloch equation.

The maximum energy a particle can impart to an electron, Tmax , is given by

Tmax =
2mec

2β2γ2

1+ 2γme/M +
#

me/M
$2

. (A.2)
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Figure A.1.: Stopping power of for positive muons in copper[5]

A semi-empirical expression for the mean excitation potential is

I = 16(eV )× Z0.9. (A.3)

The density effect correction (when I is in eV ) is given by

δ
#

βγ
$

= 2 ln

-

28.816
1

I

Q

ρ
Z

A

.

+ 2 ln(βγ)− 1. (A.4)

The ionisation energy loss rate is mass and energy dependent. As a result the rate

of energy loss by ionisation can be used to distinguish between particles of different

masses if a knowledge of the momentum of the particle is known. Due to high ener-

gies being dealt with at the LHC, this is only likely to be useful in the identification of

extremely heavy exotic particles.

A.1.2. Radiation Length, X0

Radiation length is a scaling variable for the probability of occurrence of bremsstrah-

lung, pair production and for the variance of the angle of multiple scattering. High

energy electrons predominately loose energy through by bremsstrahlung, while high
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Figure A.2.: Mean energy loss due to ionisation[5]

Ze

e e

Figure A.3.: Bremsstrahlung Feynman diagram

energy photons by the production of e+e− pairs. Radiation length is both the mean

distance over which a high-energy electron loses all but 1/e of its energy by bremss-

trahlung and 7/9 of the mean free path for pair production of a high-energy photon.

For example X0 (sil icon) = 9.36 cm[5].

A.1.3. Bremsstrahlung

Bremsstrahlung is the emission of photons by charges particles accelerated by a field

(see figure A.3 ). Bremsstrahlung, unlike ionisation, must be modeled stochastically
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as the fluctuation of the magnitude of the energy losses varies significantly when com-

pared to the mean. The Bethe-Heitler probability density function[5,129] provides a

simple and relatively accurate model of the radiative energy losses

f (z) =
(− ln(z))c−1)

Γ(c)
, with c =

t

ln(2)
, 0< z < 1 (A.5)

where z is the ratio of the energy of the electron after (Ef ) and prior to bremsst-

rahlung (Ei), i.e. z = Ef /Ei. The amount of material traversed by the particle, t , is

characterised as a fraction of the material’s radiation length

t =
x

X0

, (A.6)

where x corresponds to the physical thickness of material traversed.

The Bethe-Heitler distribution is assumed to be independent of the energy of the in-

cident electron and its dependance on material thickness. The Bethe-Heitler distribu-

tion provides a reasonable approximation of fraction of energy retained however the

Geant4[74,75] simulation is much more accurate. The difference between Geant4

simulation and the Bethe-Heitler simulation can be seen in Figure A.4 with the largest

discrepancy being seen at low z.

The emission probability is proportional to 1/m2 and has la inear dependance on the

energy of incident particle once above a certain critical energy. Ec, the critical energy,

as defined by Rossi[130] is the energy at which the ionization loss per radiation length

is equal to the electron energy .i.e. the point at which the bremsstrahlung becomes

the predominate energy loss mechanism.

At energies greater than ∼ 100 GeV , radiative energy losses become significant for

muons and pions. In this case, the Bethe-Bloch equation is an inadequate description

of energy loss. For muons and pions, the stochastic nature of bremsstrahlung is gen-

erally overlooked and, in the limit of t ≪ 1, it is standard practice simply to add an

additional term in Equation A.1 for radiative energy losses [5]

−
dE

d x

+
+
+
+
rad

=
Ei

X0

Rme

M

S2

, (A.7)

where Ei is again the initial energy of the charged particle.



236 The effect of matter on the trajectory

z
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(
z)

-310

-210

-110
Geant4

Bethe-Heitler

(a) PDF

z
0 0.2 0.4 0.6 0.8 1

F
(z

)

0

0.2

0.4

0.6

0.8

1

Geant4

Bethe-Heitler

(b) CDF

Figure A.4.: The probability and cumulative distribution function of the fraction of energy re-

tained for 10 GeV electrons passing through 0.2 X0 of silicon. Geant4 simulation

is compared to the Bethe-Heitler distribution.
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Figure A.5.: Bremsstrahlung angular distribution from Geant4 simulation of electrons passing

through 0.1 X0 of silicon

The angular distribution of the bremsstrahlung with respect to the original particles

trajectory is virtually collinear. In the rest frame of the electron this is certainly not

true but in the energy regime dealt with at ATLAS and the LHC it can be assumed that

the photon is emitted in a collinear direction to that of the original charged lepton.
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A.2. Multiple scattering

When an electrically charged particle passes through matter it is deflected off its origi-

nal path by scattering off the electrons or nuclei of the matter. This process will occur

on numerous occasions and is known as either Multiple Coulomb scattering or just

multiple scattering. Multiple scattering is stochastic in nature and as such causes a

random deviation of the trajectory. Under all but the most extreme circumstances it is

sufficient to characterise the angular distribution of scattered particles as a Gaussian,

distributed around zero, with a width

σ(θ pro j) =
13.6 (MeV )

β cp
q

T

x

X0

5

1+ 0.038 ln

)
x

X0

*6

, (A.8)

where p is the initial momentum of the particle, q is the charge, x is the thick-

ness of the material being traversed and X0 is the radiation length of the material.

[5,130,131].

This approximation covers the central 98% of the angular distribution. Multiple scat-

tering at large angles results in significantly longer tails than produced by a Gaussian

(see Figure A.6).

A description of how to treat multiple scattering in global least squares track fitting

can be found in section 5.2
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Figure A.6.: The projected scattering angle distribution θ pro j (left) of a muon with 5 GeV

that traverses a silicon detector with a thickness t that corresponds to 1% of ra-

diation length X0 . The distribution has been created by Monte Carlo simulation

of 25000 muon events using the Geant4 simulation toolkit. It shows the Gaus-

sian distribution originating from the Highland formula (dashed). The shaded

area represents a 98% core fraction of the Geant4 distribution. The illustration

(right) shows the definition of the projected angle θ pro j for an example multiple

scattering process[127]
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APPENDIX

ALTERNATIVE METHOD TO OBTAIN

ALIGNMENT PARAMETERS

An alternative way of extracting the alignment parameters from a track χ2 minimisa-

tion is to replace the derivatives with respect to α[55] by

d

dp
=
∂

∂α
+

dp

dα

∂

∂ p
. (B.1)

To obtain the derivative dp/dα, it is assumed that once at a minimum the derivative

of the track χ2 with respect to p is taken and as such can be expressed as

d

dα

∂ χ2

∂ p
= 0. (B.2)

This leads to the final expression for the derivatives of the track parameters with

respect to the alignment parameters

dp

dα
= −

∂ 2χ2

∂α∂ p

-

∂ 2χ2

∂ p2

.−1

. (B.3)
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To simplify the notation the following are defined:

A≡
∂ r

∂α
, H ≡

∂ r

∂ p
. (B.4)

A solution can now be obtained for dp/dα

d

dα
=
∂

∂α
− AT V−1HC

∂

∂ p
, (B.5)

where C is the covariance matrix from the track fit

dχ2

dα
= 2AT V−1(V −HCHT )V−1r (B.6)

d2χ2

dα2
= 2AT V−1(V −HCHT )V−1A. (B.7)

Comparing these derivative to those of the single track fit one can see that there is an

additional term is present ( HCHT ). This term is the representation of the covariance

of the track parameters in the measurement space. R = V − HV HT is the covariance

matrix of the residuals.

The corrections to the alignment parameters, ∆α, can be evaluated from the first

and second derivatives for an initial alignment calibration α0 and estimated track

parameters p0. From a large sample of tracks we solve the equation B.8.

d2χ2

dα2
∆α= −

dχ2

dα
(B.8)



C
APPENDIX

NOTES ON THE CONVERGENCE OF THE

NEWTON-RAPHSON ALGORITHM

The Newton-Raphson algorithm is a root finding algorithm. Assume there is a func-

tion f (x) and take a Taylor series expansion of f (x) around the point x = x0+ ε

f (x0+ ε) = f (x0) + f
′
(x0)ε+

1

2
f
′′
(x0)ε

2+ .... (C.1)

If only the first order terms are kept, setting f (x0+ε) = 0 and solving for ε = ε0 gives

ε0 =−
f (x0)

f
′
(x0)

, (C.2)

which is just the first order correction to the roots position. The next correction is

calculated by letting x1 = x0 + ε0 and calculating a new ε1. The process can be

repeated until it converges to a fixed point (which is precisely a root) using

xn+1 = xn−
f (xn)

f
′
(xn)

(C.3)
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242 Notes on the Convergence of the Newton-Raphson algorithm

for n = 1, 2, 3, ..... It is clear that if the function is linear the precise solution will be

obtained in one iteration.

To gain a better understanding on the convergence of the Newton Raphson method,

assume that after iteration k+ 1, x converges toward x∗ with f
′
(x∗)! = 0, and define

the error after the kth step by

xk = x∗+ εk. (C.4)

Expanding f (xk) about x∗ gives

f (xk) = f (x∗) + f
′
(x∗)εk+ 1/2 f

′′
(x∗)ε2

k+ ...

= f
′
(x∗)εk +

1

2
f
′′
(x∗)ε2

k + ... (C.5)

f
′
(xk) = f

′
(x∗) + f

′′
(x∗)εk+ ... (C.6)

But

εk+1 = εk + (xk+1− xk)

= εk −
f (xk)

f
′
(xk)

≈ εk −
f
′
(x∗)εk+

1

2
f
′′
(x∗)ε2

k

f
′
(x∗) + f

′′
(x∗)εk

(C.7)

Taking the second-order expansion leads to

εk+1 ≈
f
′′
(x∗)

2 f
′
(x∗)

ε2
k. (C.8)

Showing that when the method converges it will do so quadratically.
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APPENDIX

SILICON MISALIGNMENTS FOR THE CSC

EXERCISE

This appendic presents the misalignments used during the CSC exercise of the Silicon

Tracker. All misalignment numbers that will be shown in the following have been

taken from[125].

D.1. Silicon: Level 1 Transforms

In the following table the misalignments to be applied to the Pixel and SCT subdetec-

tors as level 1 transforms are displayed. The reference frame of these transformations

is the global ATLAS coordinate system, where x is horizontal, y vertical and z along

the beamline, and Rx , Ry and Rz are rotations around each axis respectively. In Table

D.1, displacements are given in mm and rotations in mrads. The Pixel detector will

be treated as a single unit, without relative misalignments between the barrel and the

end-caps due to the detector being installed as a single entity.
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Level 1 Transforms

System Tx Ty Tz Rx Ry Rz

Pixel detector +0.60 +1.05 +1.15 -0.10 +0.25 +0.65

SCT Barrel +0.70 +1.20 +1.30 +0.10 +0.05 +0.80

SCT End-cap A +2.10 -0.80 +1.80 -0.25 0.00 -0.50

SCT End-cap C -1.90 +2.00 -3.10 -0.10 +0.05 +0.40

Table D.1.: Silicon: Level 1 displacements

D.2. Silicon: Level 2 Transforms

In the Table D.2 the misalignments applied to the Pixel and SCT layers/disks at Level

2 are shown. The coordinate system is the same as in the Level 1 transforms and

again the global displacements are given in mm and rotations in mrads.

D.3. Silicon: Level 3 Transforms

In the Table D.3 the misalignments to be applied for the Pixel and SCT modules as

Level 3 transforms are displayed. The coordinate x ′ is along the principle measuring

direction of the module(i.e, along short-pixels for Pixel modules, across strips for SCT

modules), y ′ along the perpendicular direction to x ′ within the module plane (i.e,

along long-pixels for Pixel modules, along strips for SCT modules), and z′ is defined

in the direction out-of the module plane. The three angles, Rx ′ , Ry′ and Rz′ correspond

to rotations around the three local axis, x ′, y ′ and z′ respectively. Displacements are

given in mm and rotations in radians. These misalignments must be generated within

flat distributions of width defined by the numbers quoted in the Table D.3.
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Level 2 Transforms

System layer x y z α β γ

Pixel Barrel

0 +0.020 +0.010 0.0 0.0 0.0 +0.6

1 -0.030 +0.030 0.0 0.0 0.0 +0.5

2 -0.020 +0.030 0.0 0.0 0.0 +0.4

Pixel End-cap A

1 -0.224 0.030 0.012 1.39 0.00 -1.39

2 0.443 -0.358 -0.037 -2.27 0.00 2.27

3 0.271 -0.236 -0.027 -2.38 0.00 2.38

Pixel End-cap C

1 -0.560 -0.031 0.200 -1.59 0.00 1.59

2 0.366 -0.221 -0.113 1.41 0.00 -1.41

3 0.111 -0.441 0.052 0.28 0.00 -0.28

SCT Barrel

0 0.0 0.0 0.0 0.0 0.0 -1.0

1 +0.050 +0.040 0.0 0.0 0.0 +0.9

2 +0.070 +0.080 0.0 0.0 0.0 +0.8

3 +0.100 +0.090 0.0 0.0 0.0 +0.7

SCT End-cap A

1 +0.050 +0.040 0.0 0.0 0.0 -0.1

2 +0.010 -0.080 0.0 0.0 0.0 0.0

3 -0.050 +0.020 0.0 0.0 0.0 +0.1

4 -0.080 +0.060 0.0 0.0 0.0 +0.2

5 +0.040 +0.040 0.0 0.0 0.0 +0.3

6 -0.050 +0.030 0.0 0.0 0.0 +0.4

7 -0.030 -0.020 0.0 0.0 0.0 +0.5

8 +0.060 +0.030 0.0 0.0 0.0 +0.6

9 +0.080 -0.050 0.0 0.0 0.0 +0.7

SCT End-cap C

1 +0.050 -0.050 0.0 0.0 0.0 +0.8

2 0.0 +0.080 0.0 0.0 0.0 0.0

3 +0.020 +0.010 0.0 0.0 0.0 +0.1

4 +0.040 -0.080 0.0 0.0 0.0 -0.8

5 0.0 +0.030 0.0 0.0 0.0 +0.3

6 +0.010 +0.030 0.0 0.0 0.0 -0.4

7 0.0 -0.060 0.0 0.0 0.0 +0.4

8 +0.030 +0.030 0.0 0.0 0.0 +0.6

9 +0.040 +0.050 0.0 0.0 0.0 -0.7

Table D.2.: Silicon: Level 2 displacements
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Level 3 Transforms

System T ′x T ′y T ′z Rx ′ Ry′ Rz′

Pixel Barrel modules 0.030 0.030 0.050 0.001 0.001 0.001

Pixel End-cap modules 0.030 0.030 0.050 0.001 0.001 0.001

SCT Barrel modules 0.150 0.150 0.150 0.001 0.001 0.001

SCT End-cap modules 0.100 0.100 0.150 0.001 0.001 0.001

Table D.3.: Silicon: Level 3 displacements
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APPENDIX

PARAMETERISATION OF THE CALORIMETER

PERFORMANCE

A requirement of using the calorimeter as a tracking detector is to know the quality

of the measured quantities. The quality of measurement will vary with energy and

position and as such need to be parameterised to ensure their usefulness.

E.1. Angular Resolution

The angular resolution of calorimeter varies a function inversely proportional to the

energy deposited in the calorimeter. The constant term of the angular resolution and

is variation as a function as absolute value of η is shown in Table E.1 while the energy

dependant term is shown in Table E.2.
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η c (mrad)

0.30 0.191492

0.60 0.09350+ 0.392766η

0.80 0.327201

1.05 0.141755

1.35 −1.07475+ 1.15372η

1.55 −15.2133+ 11.2163η

1.85 1.28452− 0.53016η

2.30 −0.66562+ 0.52136η

2.50 0.327754

Table E.1.: Parameterisation of the azimuthal angular resolution of the calorimeter (constant

term)

η a (mrad GeV)

0.65 28.5262+ 9.85529η

1.05 −69.0774+ 166.424η

1.25 76.9113+ 14.9434η

1.55 −407.594+ 393.218η

1.95 415.602− 172.824η

2.05 −84.0844

2.40 187.563− 47.2463η

2.50 69.3652

Table E.2.: Parameterisation of the azimuthal angular resolution of the calorimeter (energy

dependant term)

E.2. Depth

The apparent depth cluster within the calorimeter varies as inversely proportional to

the square root of the energy deposited in the calorimeter cluster. The constant term

and energy dependant term of the depth vary a function as absolute value of η and is

shown in Table E.3. it should be noted that the depth of the cluster only work in the

barrel region of the calorimeter. In the end-caps very little improvement of the cluster

resolution can be seen so the depth of the calorimeter cluster is to be taken to be the

surface of the second sampling layer.
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η b (mm GeV1/2) c (mm)

0.65 190.029+ 44.2047η 1669.29− 12.6291η

1.05 −826.993+ 1771.17η 1848.43− 333.571η

1.45 −3172.17+ 3629.60η 1918.48− 303.562η

Table E.3.: Parameterisation of the apparent cluster depth

E.3. Energy Resolution

The energy resolution of calorimeter varies a function proportional to the square root

of the energy deposited in the calorimeter cluster. The constant term and energy

dependant term of the angular resolution and is variation as a function as absolute

value of η is shown in Table E.4.
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η b (MeV3/2) c (MeV)

0.05 9.60832 0.764440

0.15 9.22633 0.778579

0.25 9.36220 0.902059

0.35 9.51660 0.794211

0.45 9.84234 0.772288

0.55 10.8710 0.748239

0.65 12.3186 0.504367

0.75 16.9488 0.309400

0.85 18.2509 0.222931

0.95 19.3125 0.000420

1.05 22.0666 0.005880

1.15 22.4085 0.151410

1.25 23.5868 0.001328

1.35 26.4539 0.007946

1.45 27.6533 0.006253

1.55 35.2674 0.517023

1.65 37.6763 0.002220

1.75 23.6935 0.687641

1.85 20.9790 0.625471

1.95 17.7002 0.627151

2.05 18.0877 0.713889

2.15 18.0476 0.690940

2.25 15.9020 0.709736

2.35 14.9494 0.713798

2.45 18.6565 1.217530

Table E.4.: Parameterisation of the energy resolution
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APPENDIX

NON-LINEAR PROBLEM MINIMISATION

The track model described in Section 8.3 has features that makes it intrinsically non-

linear. The fit of a helix in a uniform magnetic field is a non-linear problem, however

it can be linearised by a number of transformations, e.g. a Riemann transform[132].

The fact that the magnetic field is not completely homogenous does affect this lin-

earisation as the path of the particle in the bending plane will no longer be perfectly

circular, but as was shown at high momentum the track model is approximately linear

so this is not overly problematic.

The difficulty lies in the CaloBrem track model, which is essentially two tracks that

sharing a common vertex, where the position of the vertex is not known and can

move. In general when fitting a vertex of two tracks you fit the two tracks, the tracks

are first fitted individually. These results are then used to perform a fit of the vertex.

However unlike a standard vertex fit the movement of hypothesised vertex position

can shift hits from one track to another. This in turn will change the tracks fits and

hence require the vertex fit to be performed again. In order to find the best fit result,

it would be necessary to fit all possible divisions of the hits between the two tracks.

Then determine which of those fits is the best, possibly using a χ2 as a measure of
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the final fit quality. However this process can be computationally time consuming as

there can be > 40 hits per track.

Another way of dealing with such a problem is to treat it as a multivariate non-linear

problem and find the most likely solution. This is known as function optimisation

and there are a number of programs that can be employed for this process based

upon similar priciples. What follows is summary of[133] which describes the basic

principles of iterative function optimisation.

To highlight these principles consider the function F(x), where the aim of the func-

tion optimisation is to find the values of the variables x for which the function F(x)

obtains its smallest value. In this case the function to be minimised F is the χ2 of

the bremsstrahlung track. The minimum of F(x) is not known analytically but the

function F(x) can be evaluated for any physical values of x. Hence the function F(x)

is repeatedly evaluated at different points x until its minimum value is attained.

To reduce computation time it is desirable to find the solution in the fewest number

of function calls. Hence the properties of the function need to be investigated to help

reduce the number of function calls. The function F(x) will obtain its smallest value

at a point where either:

• all derivatives ∂ F/∂ x= 0 , or

• some derivative ∂ F/∂ x does not exist , or

• the point x is on the boundary of the allowed region.

As there may be many of these points within the range where the function is well

defined it may take some time to find the global minimum. To simplify this problem,

we will no longer attempt to find the global minimum but instead find just the local

minimum. A local minimum can be defined as a point x0, where for all points x in

some neighbourhood around x0, result in F(x) > F(x0). So by varying x in small

steps in a direction which causes F to decrease, and continuing until F increases in all

allowed directions from some point x0, we can find a minimum. However, this does

require that an initial guess of the solution is in reasonable agrement to the global

minimum.

Although this argument suggests that a solution can be found, it does not indicate how

to find the solution. A Taylor’s series expansion for F about some point x1 provides
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the information required to find the minimum

F(x) = F(x1) + gT (x− x1) + 1/2(x− x1)V(x− x1)
T + · · · ,

where g is the gradient vector gi = ∂ F/∂ xi and the matrix V is defined by Vi j =

∂ 2F/∂ xi∂ x j all evaluated at x1.

As with any Taylor series expansion the higher order terms only become important

when (x− x1) becomes large. As such, a predication based on the lower order terms

should be correct if the step size is small. The first term of the series is constant

and provides no information about the minimum of the function. The second term

is proportional to the gradient g, and provides information about which direction

the function is decreasing fastest. This linear term g→ 0 when approaching a mini-

mum, so an additional term is required. This third term, which is quadratic, describes

parabolic behaviour and is the lowest term to predict a minimum. Also V can be ex-

pected to be constant over small regions as it would be constant if the higher order

term were zero[133].

MINUIT[134] is the standard in minimisation packages used by High Energy Physi-

cists and was chosen as the minimisation program for this problem. The principal

algorithm, called MIGRAD, is a variable metric method. It exploits the idea that the

computation of the second derivative is needed to move to the function minimum,

and the matrix need not be computed accurately during the initial steps as it would

be expected to be changing significantly. Instead the second derivative can be itera-

tively improved, so that by the time the method gets near the actual minimum, the

matrix is accurate and rapidly converges.

In the future other minimisation techniques may be employed, for example FUMILI[135],

to see if there are any performance improvements.
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